56. A Duality Theorem for Locally Compact Groups. IV

By Nobuhiko TATSUUMA

Department of Mathematics, Kyoto University (Comm. by Kinjirô KUNUGI, M.J.A., March 12, 1966)

1. As a sequel of the previous articles $[1] \sim [3]$, the present paper is devoted to prove the duality theorem which is same as shown in [3], for certain class of locally compact semi-direct product G of a separable closed abelian normal subgroup N and a closed subgroup K satisfying the assumptions $1 \sim 4$. These class contains the motion group on \mathbb{R}^n , the *n*-dimensional inhomogeneous Lorentz group, and the transformation group of straight line.

We call an operator field $T = \{T(D)\}$ over the set Ω_0 of all equivalence classes (representative $D = \{U_g^p, \mathfrak{H}^p\}$) of irreducible unitary representations of G admissible when

(1) T(D) is a unitary operator in \mathfrak{H}^p for any D in Ω_0 .

(2) For any irreducible decomposition $\int D^{\lambda} d\nu(\lambda)$ of $D_1 \otimes D_2$ which is related by U,

$$U(T(D_1) \otimes T(D_2)) U^{-1} = \int T(D^{\lambda}) d
u(\lambda)$$
 .

The main proposition of this paper is as follows.

Proposition. For any admissible operator field T, there exists unique element g in G such that

 $T(D) = U_g^D$ for any D in Ω_0 .

2. [Assumption 1] G is a regular semi-direct product in the sense of Mackey [4].

Consider the dual group \hat{N} of abelian group N, then g in G gives a transformation $g(\hat{n})$ on \hat{N} defined by

$$\langle g(\hat{n}), n \rangle = \langle \hat{n}, g^{-1}ng \rangle$$
,

where brackets show ordinary dual relation between N and \hat{N} . We choose a representative \hat{n} in given G-orbit L in \hat{N} , and let the isotropy group of \hat{n} in G be $G(\hat{n})$, then $G(\hat{n})$ is a semi-direct product of N and a subgroup $K(\hat{n})$ in K.

For any irreducible unitary representation $\tau = \{W_k^{\tau}, \mathfrak{H}^{\tau}\}$ of $K(\hat{n})$ consider the representation $D(\hat{n}, \tau)$ of G induced by the representation $\{\langle \hat{n}, n \rangle W_k^{\tau}, \mathfrak{H}^{\tau}\}$ of $G(\hat{n})$ (g=nk).

From Mackey's results ([4] Th. 14.1 and 2), $D(\hat{n}, \tau)$ is irreducible and determined by L and τ besides unitary equivalence, and arbitrary irreducible unitary representation of G is given in this form. By the definition, $D(\hat{e}, \rho)(=D(\rho))$ is regarded as a representation $\rho = \{V^{\rho}, \mathfrak{H}^{\rho}\}$ of factor group $K \sim (G/N)$. And elements of the space $\mathfrak{H}(\hat{n}, \tau)$ of representation $D(\hat{n}, \tau)$ $(\hat{n} \neq \hat{e})$ are represented as \mathfrak{H}^{τ} -valued functions on G satisfying

 $f(nkg) = \langle \hat{n}, n \rangle W_k^{\tau} f(g)$, for any $n \in N, k \in K$.

[Assumption 2] There exists an G-invariant open semi-group A in \hat{N} , such that

(i) for any \hat{n} in A, $K(\hat{n})$ is a compact subgroup of K,

(ii) for any \hat{n}_1 in \hat{N} , there exists a \hat{n}_2 in A such that the set $\{k: \hat{n}_1 + k(\hat{n}_2) \in A\}$ has positive Haar measure in K.

When \hat{n}_i is in A, the compactness of $K(\hat{n}_i)$ allows us to apply the decomposition theorem given by Mackey [4].

$$D(\hat{n}_1, \tau_1) \otimes \cdots \otimes D(\hat{n}_l, \tau_l) \sim \int_s D(\hat{n}_1, \cdots, \hat{n}_l; \tau_1, \cdots, \tau_l; \tilde{k}) d\nu(\tilde{k}),$$

where $\tilde{k} = (k_1, \dots, k_l)$ runs over the representatives in the space S of $(K(\hat{n}_1) \times \dots \times K(\hat{n}_l), \tilde{K})$ -double cosets $(\tilde{K} = \{(k, \dots, k) \in K \times \dots \times K\})$, and ν is a measure over S such that a double coset-wise set in $K \times \dots \times K$ is a null set with respect to the Haar measure $\mu^l = \mu \times \dots \times \mu$ if and only if its canonical image in S is a ν -null set. $D(\hat{n}_1, \dots, \hat{n}_l; \tau_1, \dots, \tau_l; \tilde{K})$ shows induced representation of G by the restriction of $\langle \sum_{j=1}^{l} k_j^{-1}(\hat{n}_j), n \rangle \langle k_1^{-1}(\tau_1) \otimes \dots \otimes k_l^{-1}(\tau_l) \rangle$, to $N(k_1^{-1}K(\hat{n}_l)k_1 \cap \dots \cap k_l^{-1}K(\hat{n}_l)k_l)$. $(k_j^{-1}(\tau_j) = \{W_{k_j k k_j}^{j-1}, \mathfrak{I}^{\tau_j}\}$: a representation of the group $k_j^{-1}K(\hat{n}_j)k_j$.

The assumption 2 (ii) asserts the irreducible decomposition of $D(\hat{n}_1, \tau_1) \otimes D(\hat{n}_2, \tau_2)$ ($\hat{n}_2 \in A$) has a component which is a direct integral of $D(\hat{n}, \tau)$ $\hat{n} \in A$ with positive measure.

Moreover the corresponding vector in the space of representation on the right hand side to $f_1 \otimes \cdots \otimes f_l$ in $\mathfrak{H}(\hat{n}_1, \tau_1) \otimes \cdots \otimes \mathfrak{H}(\hat{n}_l, \tau_l)$ $(\hat{n}_1, \cdots, \hat{n}_l \neq \hat{e})$ by this decomposition is the function $f_1(k_1g) \otimes \cdots \otimes f_l(k_lg)$ on G.

Evidently, $D(\rho_1) \otimes D(\rho_2) \sim D(\rho_1 \otimes \rho_2)$.

And $D(\rho) \otimes D(\hat{n}, 1) \sim D(\hat{n}, \rho \mid_{\kappa(\hat{n})})$, where the right hand side shows the induced representation of G by $\langle \hat{n}, n \rangle \rho \mid_{\kappa(\hat{n})} (\rho \mid_{\kappa(\hat{n})})$: the restriction of ρ to $K(\hat{n})$ of the subgroup $NK(\hat{n})$, and the corresponding vector to $v \otimes f$ of $\mathfrak{H}^{\rho} \otimes \mathfrak{H}(\hat{n}, 1)$ is the function $f(g)(U_{g}^{\rho}v)$ on G. If $\rho \mid_{\kappa(\hat{n})} \sim \sum_{j} \tau_{j} \ (\tau_{j})$: irreducible component with projection P_{j} , then $D(\rho) \otimes D(\hat{n}, 1)$ contains the component equivalent to $D(\hat{n}, \tau_{j})$ and the component of above vector is given by $f(g)(P_{j}U_{g}^{\rho}v)$. Moreover, in the case of $\tau_{j} \sim 1$, we can set a $K(\hat{n})$ -invariant vector φ in ${}_{d\mathfrak{S}}$ as $f(g) \langle U_{g}^{\rho}v, \varphi \rangle \varphi = f(g)P_{j}U_{g}^{\rho}v$ which corresponds to the function $f(g) \langle U_{g}^{\rho}v, \varphi \rangle$ in the space $\mathfrak{H}(\hat{n}, 1)$.

Lastly we set up the following assumptions.

Duality Theorem for Locally Compact Groups. IV

The duality theorem of the same type is true [Assumption 3] in the case of K.

[Assumption 4] There exists a finite set $\hat{N} = \{\hat{n}_i\}$ $(1 \leq j \leq l)$ and a neighborfood V of e in K such that the map corresponding $(k_1, \dots, k_l) \in V \times \dots \times V$ to $\sum k_i(\hat{n}_i)$ is an open map.

3. Now we are on the step to prove the main theorem. Let $T = \{T(D)\}$ is a given admissible operator field. We can consider T as an admissible operator field on the dual space of K which is imbedded as a subset in Ω_0 , assumption 3 assures existence of k_0 in K such that $T(D(\rho)) = U_{k_0}^{D(\rho)}$ for any ρ . Define an admissible operator field $T_0 = \{T_0(D)\}$ by $T_0 = TU_{k_0}^{-1}$, then obviously $T_0(D(\rho)) = I_{D(\rho)}$ (identity operator in \mathfrak{P}). And it is enough to show that $T_0 = U_n$ for some $n \in N$. On the component of $D(\rho) \otimes D(\hat{n}, 1)$ which is equivalent to $D(\hat{n}, \tau_j)$ the admissibility of T_0 gives,

$$T_{\scriptscriptstyle 0}(D(\hat{n},\tau_j))(f(g)P_jU_g^{\scriptscriptstyle \rho}v) = T_{\scriptscriptstyle 0}(D(\hat{n},1)f(g))P_jU_g^{\scriptscriptstyle \rho}v , \qquad (1)$$

and for the case of $\tau_j = 1$,

$$T_{0}(D(\hat{n}, 1))(f(g)\langle U_{g}^{\rho}v, \varphi\rangle) = \langle U_{g}^{\rho}T_{0}(D(\rho))v, \varphi\rangle(T_{0}(D(\hat{n}, 1))f)(g) \\ = \langle U_{g}^{\rho}v, \varphi\rangle(T_{0}(D(\hat{n}, 1))f)(g).$$

$$(2)$$

Because of ρ , v, f are arbitrary and from (2), $T_0(D(\hat{n}, 1))$ must be an operation to multiply a measurable function $c(\hat{n}, g)$ on G such that $|c(\hat{n}, g)| = 1$, $c(\hat{n}, nkg) = c(\hat{n}, g)$ for $n \in N$, $k \in K(\hat{n})$. While (1) results $T_0(D(\hat{n}, \tau))$ is the operator of same form as $T_0(D(\hat{n}, 1))$ independently to τ . From the equivalence of $D(\hat{n}, 1)$ and $D(g(\hat{n}), 1)$, the function $c(\hat{n}, g)$ coincides with $c_0(g^{-1}(\hat{n}))$ for a function c_0 on \hat{N} for almost all g.

For the determination of c_0 , the decomposition of

 $D(\hat{n}_0, \tau_0) \otimes D(\hat{n}_1, \tau_1) \otimes \cdots \otimes D(\hat{n}_l, \tau_l)$ $(\widehat{n}_0, \widehat{n}_1, \cdots, \widehat{n}_l \in A)$ is available. Simple argument leads us to that $D(\hat{n}_0, \hat{n}_1, \dots, \hat{n}_l; \tau_0, \tau_1, \dots, \tau_l)$ $\tau_i; \tilde{k})(=D_1)$ is decomposed to a discrete direct sum of $D(\sum_{i=0}^{i} k_j^{-1}(\hat{n}_j), \tau)$. Since the operators $T_0(D(\sum k_i^{-1}(\hat{n}_i), \tau))$ are all same form for any τ , the operator $T_0(D_1)$ is represented as an operator to multiply the function $c_0(g^{-1}(\sum k_i^{-1}(\hat{n}_i)))$. In the relation

$$(T_0(D(\widehat{n}_0, au_0))m{f}_0)(k_0g)\otimes\cdots\otimes(T_0(D(\widehat{n}_l, au_l))m{f}_l)(k_lg)\ =(T_0(D(\sum k_j^{-1}(\widehat{n}_j), au))m{f}_0(k_0g)\otimes\cdots\otimesm{f}_l(k_lg))\;,$$

we substitute the forms of operators and get

 $c_0(g^{-1}k_0^{-1}(\hat{n}_0)) \times \cdots \times c_0(g^{-1}k_l^{-1}(\hat{n}_l)) = c_0(g^{-1}(\sum k_j^{-1}(\hat{n}_j)))$ (a.a. k_j, g). Exclude g and calculate intergration

$$egin{aligned} &\int_{arphi imes \dots imes arphi} c_0 \Bigl(\sum_{j=0} k_j^{-1}(\widehat{n}_j) \Bigr) f(\widetilde{k}) d\mu^l(\widetilde{k}) \ &= c_0 (k_0^{-1}(\widehat{n}_0)) \Bigl(\prod_{j=1} c_0 (k_j^{-1}(\widehat{n}_j)) f(\widetilde{k}) d\mu^l(\widetilde{k}) \end{aligned}$$

for any continuous function f on the space $V \times \cdots \times V$ in the as-

No. 37

sumption 4. The left hand side is a continuous function of \hat{n}_0 , so $c_0(k_0^{-1}(\hat{n}_0))$ too, consequently $c_0(\hat{n}_0)$ is continuous over A, and

 $c_0(\hat{n}_1+\hat{n}_2)=c_0(\hat{n}_1)c_0(\hat{n}_2)$ for $\hat{n}_1, \ \hat{n}_2 \in A$. (3) But the assumption 2 (ii) means for any \hat{n} in \hat{N} , there exists \hat{n}_1 in A such that $\hat{n}+\hat{n}_1=\hat{n}_2$ is in A. From (3), if we define $c_0(\hat{n})=c_0(\hat{n}_2)/c_0(\hat{n}_1)$, then c_0 is uniquely extendable as a character on \hat{N} . That is there exists a n in N and

$$c_0(\hat{n}) = \langle \hat{n}, n \rangle$$
.

Immediate calculation shows

$$T_0(\hat{n},\tau) = U_n^{D(\hat{n},\tau)} \qquad \hat{n} \in A .$$
(4)

Again we apply the assumption 2 (ii) to the decomposition of $D_1(\hat{n}_1, \tau_1) \otimes D_2(\hat{n}_2, \tau_2)$ ($\hat{n}_2 \in A$), substituting the above formula of $T_0(\hat{n}, \tau)$ on the component which is a direct integral of $D(\hat{n}, \tau)$'s ($\hat{n} \in A$), easily it is shown that the equation (4) is valid for any $\hat{n} \in \hat{N}$.

q.e.d.

References

- [1] N. Tatsuuma: A duality theorem for locally compact groups I. Proc. Japan Acad., 41, 878-882 (1965).
- [2] ----: A duality theorem for locally compact groups II. Ibid., 42, 46-47 (1966).
- [3] —: A duality theorem for locally compact groups III. Ibid., 42, 87-90 (1966).
- [4] G.W. Mackey: Induced representations of locally compact groups I. Ann. Math., 55, 101-139 (1952).