56. A Duality Theorem for Locally Compact Groups. IV

By Nobuhiko Tatsuuma
Department of Mathematics, Kyoto University
(Comm. by Kinjirô Kunugr, m.J.A., March 12, 1966)

1. As a sequel of the previous articles [1] [3], the present paper is devoted to prove the duality theorem which is same as shown in [3], for certain class of locally compact semi-direct product G of a separable closed abelian normal subgroup N and a closed subgroup K satisfying the assumptions $1 \sim 4$. These class contains the motion group on \boldsymbol{R}^{n}, the n-dimensional inhomogeneous Lorentz group, and the transformation group of straight line.

We call an operator field $T=\{T(D)\}$ over the set Ω_{0} of all equivalence classes (representative $D=\left\{U_{g}^{D}, \mathfrak{S}^{D}\right\}$) of irreducible unitary representations of G admissible when
(1) $T(D)$ is a unitary operator in \mathfrak{S}^{D} for any D in Ω_{0}.
(2) For any irreducible decomposition $\int D^{\lambda} d \nu(\lambda)$ of $D_{1} \otimes D_{2}$ which is related by U,

$$
U\left(T\left(D_{1}\right) \otimes T\left(D_{2}\right)\right) U^{-1}=\int T\left(D^{\lambda}\right) d \nu(\lambda)
$$

The main proposition of this paper is as follows.
Proposition. For any admissible operator field T, there exists unique element g in G such that

$$
T(D)=U_{g}^{D} \quad \text { for any } D \text { in } \Omega_{0} .
$$

2. [Assumption 1] G is a regular semi-direct product in the sense of Mackey [4].

Consider the dual group \hat{N} of abelian group N, then g in G gives a transformation $g(\hat{n})$ on \hat{N} defined by

$$
\langle g(\widehat{n}), n\rangle=\left\langle\hat{n}, g^{-1} n g\right\rangle,
$$

where brackets show ordinary dual relation between N and \hat{N}. We choose a representative \hat{n} in given G-orbit L in \hat{N}, and let the isotropy group of \hat{n} in G be $G(\hat{n})$, then $G(\hat{n})$ is a semi-direct product of N and a subgroup $K(\hat{n})$ in K.

For any irreducible unitary representation $\tau=\left\{W_{k}^{\tau}, \mathfrak{S}^{\tau}\right\}$ of $K(\widehat{n})$ consider the representation $D(\hat{n}, \tau)$ of G induced by the representation $\left\{\langle\hat{n}, n\rangle W_{k}^{\tau}, \mathfrak{E}^{\tau}\right\}$ of $G(\hat{n})(g=n k)$.

From Mackey's results ([4] Th. 14.1 and 2), $D(\hat{n}, \tau)$ is irreducible and determined by L and τ besides unitary equivalence, and arbitrary irreducible unitary representation of G is given in this form.

By the definition, $D(\hat{e}, \rho)(=D(\rho))$ is regarded as a representation $\rho=\left\{V^{\rho}, \mathfrak{S}^{\rho}\right\}$ of factor group $K \sim(G / N)$. And elements of the space $\mathscr{S}_{\mathcal{E}}(\hat{n}, \tau)$ of representation $D(\hat{n}, \tau)(\hat{n} \neq \hat{e})$ are represented as \mathfrak{S}^{τ}-valued functions on G satisfying

$$
\boldsymbol{f}(n k g)=\langle\hat{n}, n\rangle W_{k}^{\tau} \boldsymbol{f}(g), \quad \text { for any } n \in N, k \in K
$$

[Assumption 2] There exists an G-invariant open semi-group A in \hat{N}, such that
(i) for any \hat{n} in $A, K(\hat{n})$ is a compact subgroup of K,
(ii) for any \widehat{n}_{1} in \hat{N}, there exists a \hat{n}_{2} in A such that the set $\left\{k: \widehat{n}_{1}+k\left(\widehat{n}_{2}\right) \in A\right\}$ has positive Haar measure in K.

When \widehat{n}_{l} is in A, the compactness of $K\left(\widehat{n}_{l}\right)$ allows us to apply the decomposition theorem given by Mackey [4].

$$
D\left(\hat{n}_{1}, \tau_{1}\right) \otimes \cdots \otimes D\left(\hat{n}_{l}, \tau_{l}\right) \sim \int_{s} D\left(\widehat{n}_{1}, \cdots, \hat{n}_{l} ; \tau_{1}, \cdots, \tau_{l} ; \tilde{k}\right) d \nu(\widetilde{k})
$$

where $\tilde{k}=\left(k_{1}, \cdots, k_{l}\right)$ runs over the representatives in the space S of $\left(K\left(\widehat{n}_{1}\right) \times \cdots \times K\left(\hat{n}_{l}\right), \widetilde{K}\right)$-double cosets $(\widetilde{K}=\{(k, \cdots, k) \in K \times \cdots \times K\}$), and ν is a measure over S such that a double coset-wise set in $K \times \cdots \times K$ is a null set with respect to the Haar measure $\mu^{l}=$ $\mu \times \cdots \times \mu$ if and only if its canonical image in S is a ν-null set. $D\left(\widehat{n}_{1}, \cdots, \widehat{n}_{l} ; \tau_{1}, \cdots, \tau_{l} ; \widetilde{K}\right)$ shows induced representation of G by the restriction of $\left\langle\sum_{j}^{l} k_{j}^{-1}\left(\hat{n}_{j}\right), n\right\rangle\left(k_{1}^{-1}\left(\tau_{1}\right) \otimes \cdots \otimes k_{l}^{-1}\left(\tau_{l}\right)\right)$, to $N\left(k_{1}^{-1} K\left(\hat{n}_{1}\right) k_{1} \cap\right.$ $\left.\cdots \cap k_{l}^{-1} K\left(\widehat{n}_{l}\right) k_{l}\right) . \quad\left(k_{j}^{-1}\left(\tau_{j}\right)=\left\{W_{k_{j} k k_{j}^{-1}}^{j}, \mathfrak{S}^{\tau_{j}}\right\}\right.$: a representation of the group $\left.k_{j}^{-1} K\left(\widehat{n}_{j}\right) k_{j}\right)$.

The assumption 2 (ii) asserts the irreducible decomposition of $D\left(\hat{n}_{1}, \tau_{1}\right) \otimes D\left(\hat{n}_{2}, \tau_{2}\right)\left(\hat{n}_{2} \in A\right)$ has a component which is a direct integral of $D(\hat{n}, \tau) \hat{n} \in A$ with positive measure.

Moreover the corresponding vector in the space of representation on the right hand side to $\boldsymbol{f}_{1} \otimes \cdots \otimes \boldsymbol{f}_{l}$ in $\mathfrak{S}_{2}\left(\widehat{n}_{1}, \tau_{1}\right) \otimes \cdots \otimes \mathfrak{S}_{(}\left(\widehat{n}_{l}, \tau_{l}\right)$ $\left(\hat{n}_{1}, \cdots, \hat{n}_{l} \neq \hat{e}\right)$ by this decomposition is the function $\boldsymbol{f}_{1}\left(k_{1} g\right) \otimes \cdots \otimes \boldsymbol{f}_{l}\left(k_{l} g\right)$ on G.

Evidently, $\quad D\left(\rho_{1}\right) \otimes D\left(\rho_{2}\right) \sim D\left(\rho_{1} \otimes \rho_{2}\right)$.
And $D(\rho) \otimes D(\hat{n}, 1) \sim D\left(\hat{n},\left.\rho\right|_{K(\hat{n})}\right)$, where the right hand side shows the induced representation of G by $\left.\langle\hat{n}, n\rangle \rho\right|_{K(\hat{n})}\left(\left.\rho\right|_{K(\hat{n})}\right.$: the restriction of ρ to $K(\hat{n}))$ of the subgroup $N K(\hat{n})$, and the corresponding vector to $v \otimes f$ of $\mathfrak{S}^{\rho} \otimes \mathscr{S}(\widehat{n}, 1)$ is the function $f(g)\left(U_{g}^{\rho} v\right)$ on G. If $\left.\rho\right|_{K(\hat{n})} \sim \sum_{j} \tau_{j}\left(\tau_{j}\right.$: irreducible component with projection $\left.P_{j}\right)$, then $D(\rho) \otimes D(\hat{n}, 1)$ contains the component equivalent to $D\left(\widehat{n}, \tau_{j}\right)$ and the component of above vector is given by $f(g)\left(P_{j} U_{g}^{p} v\right)$. Moreover, in the case of $\tau_{j} \sim 1$, we can set a $K(\hat{n})$-invariant vector φ in ${ }_{d S}$ as $f(g)\left\langle U_{g}^{\rho} v, \varphi\right\rangle \varphi=f(g) P_{j} U_{g}^{\rho} v$ which corresponds to the function $f(g)\left\langle U_{g}^{\rho} v, \varphi\right\rangle$ in the space $\mathscr{E}(\hat{n}, 1)$.

Lastly we set up the following assumptions.
[Assumption 3] The duality theorem of the same type is true in the case of K.
[Assumption 4] There exists a finite set $\hat{N}=\left\{\hat{n}_{j}\right\}(1 \leqq j \leqq l)$ and a neighborfood V of e in K such that the map corresponding $\left(k_{1}, \cdots, k_{l}\right) \in V \times \cdots \times V$ to $\sum k_{j}\left(\widehat{n}_{j}\right)$ is an open map.
3. Now we are on the step to prove the main theorem. Let $\boldsymbol{T}=\{T(D)\}$ is a given admissible operator field. We can consider \boldsymbol{T} as an admissible operator field on the dual space of K which is imbedded as a subset in Ω_{0}, assumption 3 assures existence of k_{0} in K such that $T(D(\rho))=U_{k_{0}}^{p(\rho)}$ for any ρ. Define an admissible operator field $\boldsymbol{T}_{0}=\left\{T_{0}(D)\right\}$ by $\boldsymbol{T}_{0}=\boldsymbol{T} \boldsymbol{U}_{k_{0}}^{-1}$, then obviously $T_{0}(D(\rho))=I_{D(\rho)}$ (identity operator in $\left.\mathscr{S}^{\rho}\right)$. And it is enough to show that $\boldsymbol{T}_{0}=\boldsymbol{U}_{n}$ for some $n \in N$. On the component of $D(\rho) \otimes D(\hat{n}, 1)$ which is equivalent to $D\left(\hat{n}, \tau_{j}\right)$ the admissibility of \boldsymbol{T}_{0} gives,

$$
\begin{equation*}
T_{0}\left(D\left(\hat{n}, \tau_{j}\right)\right)\left(f(g) P_{j} U_{g}^{\rho} v\right)=T_{0}(D(\widehat{n}, 1) f(g)) P_{j} U_{g}^{\rho} v, \tag{1}
\end{equation*}
$$

and for the case of $\tau_{j}=1$,

$$
\begin{align*}
T_{0}(D(\hat{n}, 1))\left(f(g)\left\langle U_{g}^{\rho} v, \varphi\right\rangle\right) & =\left\langle U_{g}^{\rho} T_{0}(D(\rho)) v, \varphi\right\rangle\left(T_{0}(D(\hat{n}, 1)) f\right)(g) \\
& =\left\langle U_{g}^{\rho} v, \varphi\right\rangle\left(T_{0}(D(\hat{n}, 1)) f\right)(g) . \tag{2}
\end{align*}
$$

Because of ρ, v, f are arbitrary and from (2), $T_{0}(D(\hat{n}, 1))$ must be an operation to multiply a measurable function $c(\hat{n}, g)$ on G such that $|c(\hat{n}, g)|=1, c(\hat{n}, n k g)=c(\hat{n}, g)$ for $n \in N, k \in K(\hat{n})$. While (1) results $T_{0}(D(\hat{n}, \tau))$ is the operator of same form as $T_{0}(D(\widehat{n}, 1))$ independently to τ. From the equivalence of $D(\hat{n}, 1)$ and $D(g(\widehat{n}), 1)$, the function $c(\hat{n}, g)$ coincides with $c_{0}\left(g^{-1}(\hat{n})\right)$ for a function c_{0} on \hat{N} for almost all g.

For the determination of c_{0}, the decomposition of

$$
D\left(\hat{n}_{0}, \tau_{0}\right) \otimes D\left(\hat{n}_{1}, \tau_{1}\right) \otimes \cdots \otimes D\left(\hat{n}_{l}, \tau_{l}\right) \quad\left(\hat{n}_{0}, \hat{n}_{1}, \cdots, \hat{n}_{l} \in A\right)
$$

is available. Simple argument leads us to that $D\left(\widehat{n}_{0}, \widehat{n}_{1}, \cdots, \widehat{n}_{l} ; \tau_{0}, \tau_{1}, \cdots\right.$, $\left.\tau_{l} ; \widetilde{k}\right)\left(=D_{1}\right)$ is decomposed to a discrete direct sum of $D\left(\sum_{j=0}^{l} k_{j}^{-1}\left(\widehat{n}_{j}\right), \tau\right)$. Since the operators $T_{0}\left(D\left(\sum k_{j}^{-1}\left(\hat{n}_{j}\right), \tau\right)\right.$) are all same form for any τ, the operator $T_{0}\left(D_{1}\right)$ is represented as an operator to multiply the function $c_{0}\left(g^{-1}\left(\sum k_{j}^{-1}\left(\hat{n}_{1}\right)\right)\right.$. In the relation

$$
\begin{aligned}
& \left(T_{0}\left(D\left(\hat{n}_{0}, \tau_{0}\right)\right) \boldsymbol{f}_{0}\right)\left(k_{0} g\right) \otimes \cdots \otimes\left(T_{0}\left(D\left(\hat{n}_{l}, \tau_{l}\right)\right) \boldsymbol{f}_{l}\right)\left(k_{l} g\right) \\
& =\left(T_{0}\left(D\left(\sum k_{j}^{-1}\left(\hat{n}_{j}\right), \tau\right)\right) \boldsymbol{f}_{0}\left(k_{0} g\right) \otimes \cdots \otimes \boldsymbol{f}_{l}\left(k_{l} g\right)\right),
\end{aligned}
$$

we substitute the forms of operators and get

$$
c_{0}\left(g^{-1} k_{0}^{-1}\left(\widehat{n}_{0}\right)\right) \times \cdots \times c_{0}\left(g^{-1} k_{l}^{-1}\left(\hat{n}_{l}\right)\right)=c_{0}\left(g^{-1}\left(\sum k_{j}^{-1}\left(\hat{n}_{j}\right)\right)\right) \quad\left(\text { a.a. } k_{j}, g\right) .
$$

Exclude g and calculate intergration

$$
\begin{aligned}
& \int_{V \times \ldots \times V} c_{0}\left(\sum_{j=0} k_{j}^{-1}\left(\widehat{n}_{j}\right)\right) f(\widetilde{k}) d \mu^{l}(\widetilde{k}) \\
& \quad=c_{0}\left(k_{0}^{-1}\left(\widehat{n}_{0}\right)\right) \int_{j=1} c_{0}\left(k_{j}^{-1}\left(\widehat{n}_{j}\right)\right) f(\widetilde{k}) d \mu^{l}(\widetilde{k})
\end{aligned}
$$

for any continuous function f on the space $V \times \cdots \times V$ in the as-
sumption 4. The left hand side is a continuous function of \widehat{n}_{0}, so $c_{0}\left(k_{0}^{-1}\left(\widehat{n}_{0}\right)\right)$ too, consequently $c_{0}\left(\hat{n}_{0}\right)$ is continuous over A, and

$$
\begin{equation*}
c_{0}\left(\widehat{n}_{1}+\widehat{n}_{2}\right)=c_{0}\left(\widehat{n}_{1}\right) c_{0}\left(\widehat{n}_{2}\right) \quad \text { for } \widehat{n}_{1}, \widehat{n}_{2} \in A . \tag{3}
\end{equation*}
$$

But the assumption 2 (ii) means for any \widehat{n} in \hat{N}, there exists \widehat{n}_{1} in A such that $\widehat{n}+\widehat{n}_{1}=\widehat{n}_{2}$ is in A. From (3), if we define $c_{0}(\widehat{n})=$ $c_{0}\left(\widehat{n}_{2}\right) / c_{0}\left(\widehat{n}_{1}\right)$, then c_{0} is uniquely extendable as a character on \hat{N}. That is there exists a n in N and

$$
c_{0}(\hat{n})=\langle\hat{n}, n\rangle .
$$

Immediate calculation shows

$$
\begin{equation*}
T_{0}(\hat{n}, \tau)=U_{n}^{D(\hat{n}, \tau)} \quad \hat{n} \in A \tag{4}
\end{equation*}
$$

Again we apply the assumption 2 (ii) to the decomposition of $D_{1}\left(\widehat{n}_{1}, \tau_{1}\right) \otimes D_{2}\left(\widehat{n}_{2}, \tau_{2}\right)\left(\widehat{n}_{2} \in A\right)$, substituting the above formula of $T_{0}(\widehat{n}, \tau)$ on the component which is a direct integral of $D(\hat{n}, \tau)$'s ($\hat{n} \in A$), easily it is shown that the equation (4) is valid for any $\hat{n} \in \hat{N}$.
q.e.d.

References

[1] N. Tatsuuma: A duality theorem for locally compact groups I. Proc. Japan Acad., 41, 878-882 (1965).
[2] -: A duality theorem for locally compact groups II. Ibid., 42, 46-47 (1966).
[3] -: A duality theorem for locally compact groups III. Ibid., 42, 87-90 (1966).
[4] G.W. Mackey: Induced representations of locally compact groups I. Ann. Math., 55, 101-139 (1952).

