By R. J. MIHALEK

University of Wisconsin, Milwaukee

(Comm. by Kinjirô KUNUGI, M.J.A., March 12, 1966)

In his lattice-theoretic formulation of incidence geometry, Gorn [2] uses a Condition E, to be called skewness [3] here, without considering its independence from the other axioms. This note is a partial answer to this question. Lattice-theoretic notions not specifically defined will be in agreement with those of Birkhoff [1].

Gorn's incidence geometry is a relatively complemented semimodular lattice of length greater than or equal to 5 and with a greatest lower bound 0. Let L with order \leq and operations $+, \cdot$ be such a lattice. The incidence geometry satisfies the further condition that it is *special* [3], i.e., if $a, b \in L$ such that ab > 0, then (a, b)M((a, b) is a modular pair). Let L be special. L satisfies *skewness* means that if $l_1, l_2, l_3, l_4 \in L$ are lines (elements of L covering points) such that l_i+l_j covers l_i and l_j for (i, j)=(1, 2), (1, 3),(2, 3), (2, 4), (3, 4), then l_1+l_4 covers l_1 and l_4 .

Theorem. If L is of length greater than 5, then L satisfies skewness.

Proof. Let $l_1, l_2, l_3, l_4 \in L$ be lines such that $l_i + l_j$ covers l_i and l_j for (i, j) = (1, 2), (1, 3), (2, 3), (2, 4), (3, 4). Suppose $l_1 + l_4$ does not cover l_1 or l_4 , i.e., l_1 and l_4 are skew lines (see [2], p. 164). Define $h=l_1+l_4$. Then the closed interval from 0 to h is of length 5 and h covers $l_i + l_j$ for (i, j) = (1, 2), (1, 3), (2, 3), (2, 4), (3, 4). Let p be a point such that $p \leq h$, which exists since L is relatively complemented and of length greater than 5. Then p+h covers h. Define $m_i =$ $p+l_i$ for each i. Then the m_i are distinct, m_i covers l_i for each $i, m_2 + m_3$ covers m_2 and m_3 , and $(m_1, m_4)M$ and $(m_2, m_3)M$ since $m_1m_4, m_2m_3 \ge p > 0.$ Further, $m_1 + m_4 = (p+l_1) + (p+l_4) = p + (l_1+l_4) =$ p+h. If $m_2m_3 > p$, then $m_1 \cdot m_4 = (m_1+m_2)(m_1+m_3) \cdot (m_2+m_4)(m_3+m_4) =$ $(m_1+m_2)(m_2+m_4)\cdot(m_1+m_3)(m_3+m_4)=m_2\cdot m_3>p$. Thus m_1, m_4 cover m_1m_4 , but $m_1+m_4=p+h$ does not cover m_1 , m_4 contrary to $(m_1, m_4)M$. Hence $m_2m_3 = p$. Now m_2 , m_3 do not cover m_2m_3 while $m_2 + m_3$ covers m_2 and m_3 . This is contrary to $(m_2, m_3)M$. Thus, necessarily, $l_1 + l_4$ covers l_1 and l_4 .

R. J. MIHALEK

References

- [1] Garrett Birkhoff: Lattice Theory (rev. ed.). Amer. Math. Soc. Colloquium Publications. Vol. 25 (1948).
- [2] Saul Gorn: On incidence geometry. Bull. Amer. Math. Soc., 46, 158-167 (1940).
- [3] L. R. Wilcox: Modular extensions of semi-modular lattices. Bull. Amer. Math. Soc., 61, 524 (1955).