54. Connection of Topological Fibre Bundles. II

By Akira Asada

(Comm. by Kinjirô KUNUGI, M.J.A., March 12, 1966)

In his note [2], the author defined the connection forms for an arbitrary topological fibre bundle $\hat{\xi}$ to be an element in $C^1(X_d, G)$ such that $s(\alpha a, \beta b) = a^{-1}s(\alpha, \beta)b$, where X_d is the total space of the principal bundle of $\hat{\xi}$, and a, b are elements of G, the structure group of $\hat{\xi}$. There, first we define the obstruction class for the existence of (topological) connection forms (of. [3]). Next we consider a relation between the topological curvature forms of complex vector bundles and their complex Chern classes (cf. [5]). We use the same notations as [2] in this note. For example, we denote $C^1(X_d, G)_d = \{s \mid s \in C^1(X_d, G), s(\alpha a, \beta b) = a^{-1}s(\alpha, \beta)b, a, b \in G\}, T^2(X_d, G) = \{s \mid s \in C^2(X_d, G), s(\alpha a, \beta b, \gamma c) = b^{-1}s(\alpha, \beta, \gamma)b, a, b, c \in G\}.$

1. Obstruction class for the existence of topological connection forms. We denote by $X_{\mathfrak{G}}$ the total space of the principal bundle associated to a topological *G*-bundle \mathfrak{E} over X, π the projection of $X_{\mathfrak{G}}$ to X. If U is a coordinate neighborhood of \mathfrak{E} then, by lemma 4 of [2], $C^{1}(\pi^{-1}(U), G)_{\mathfrak{G}}$ is not an empty set and we obtain by the corollary of theorem 2 in [2]

(1) $C^{1}(\pi^{-1}(U), G)_{g} = T^{1}(\pi^{-1}(U), G)s,$

where s is a connection form of $\xi \mid U$.

On X_{q} , we set

 S^1 : the sheaf of germs of elements of $C^1(\pi^{-1}(U), G)_{d}$,

 \mathcal{I}^i : the sheaf of germs of elements of $T^i(\pi^{-1}(U), G), i=1, 2$.

If we regard S^1 and \mathcal{I}^i to be sheaves on X, then we denote them by $S^1_{\xi}, \mathcal{I}^i_{\xi}$ and call that S^1_{ξ} is the connection sheaf and $\delta_1 S^1_{\xi}$ is the curvature sheaf of ξ .

Since $T^i(\pi^{-1}(U), G)$ are groups, \mathcal{I}^i are sheaves of groups for i=1, 2, but \mathcal{S}^1 is only a sheaf of sets. But by (1), if $s_{\mathcal{V}}$ belongs to $H^0(\pi^{-1}(U), \mathcal{S}^1)$, then $s_{\mathcal{V}}s_{\mathcal{V}}^{-1}$ belongs to $H^0(\pi^{-1}(U \cap V), \mathcal{I}^1)$ and we get

Lemma 1. The class of $\{s_{v}s_{v}^{-1}\}$ in $H^{1}(X_{g}, \mathcal{I}^{1})$ does not depend on the choice of $\{s_{v}\}$.

Definition. The class of $\{s_{\sigma}s_{r}^{-1}\}$ in $H^{1}(X_{\sigma}, \mathcal{I}^{1})$ is called the obstruction class for the existence of (topological) connection of ξ and denoted by $o(\xi)$.

Theorem 1. ξ has a connection form if and only if $o(\xi)$ is equal to 1 in $H^1(X_{\mathfrak{g}}, \mathfrak{T}^1)$.

Note 1. If ξ is an analytic bundle and restrict $C^{1}(\pi^{-1}(U), G)_{d}$ and $T^{1}(\pi^{-1}(U), G)$ to the sets of holomorphic maps, then ξ has a holomorphic connection if and only if $o(\xi)$ is equal to 1 (cf. [3]).

Note 2. We denote by $[S^1]$ the sheaf of groups generated by S^1 , then \mathcal{T}^1 is a subsheaf of $[S^1]$ and ξ has a connection form if and only if the sequence

$$0 \longrightarrow \mathcal{I}^{1} \longrightarrow [\mathcal{S}^{1}] \longrightarrow [\mathcal{S}^{1}]/\mathcal{I}^{1} \longrightarrow 0,$$

splits.

2. Calculation of $H^1(X_d, \mathcal{I}^1)$ in some special cases. We use the following notation.

 G^r : the sheaf of germs of elements of $C^r(U, G), r \ge 0$.

Under this notation, we get if G is an abelian group,

(2) $H^{1}(X_{G}, \mathcal{G}^{1}) \simeq H^{1}(X, G^{1}),$

because $a^{-1}ba = b$ in this case.

To calculate $H^{1}(X, G^{1})$, we assume G is a connected, locally connected and locally compact abelian group. Then by [8], theorem 42, we have

$$G\simeq R^{\mu} \times T^{\nu}$$
,

where R^{μ} is the μ -direct product of R^{1} , the additive group of real numbers, T^{ν} is the ν -direct product of $T^{1}=R^{1}/Z$, and we obtain

Lemma 2. Under the above assumption, we get

 $(3) G^r \simeq (R^{\mu+\nu})^r, r \ge 1.$

Corollary 1. If G is a connected, locally connected and locally compact abelian group, and if X is a normal paracompact topological space then $H^1(X_d, \mathfrak{T}^1)$ vanishes.

Corollary 2. If X and G are the same as corollary 1, then a topological G-bundle over X always has a topological connection form.

Note 1. Since T^1 can not be imbedded in R^1 , the corollary 2 is not a special case of [1], theorem 1.

Note 2. The isomorphism (3) is true even if G^r and $(R^{\mu+\nu})^r$ are both sheaves of holomorphic sections. But (3) is false if r=0 or if we use $\tilde{C}^r(U,G)$ instead of $C^r(U,G)$ in the definition of G^r .

To extend this result for a non abelian group G, we assume H is a (closed) normal subgroup of G and set G/H=A. We denote

 \mathcal{I}_{H}^{i} : the subsheaf of \mathcal{I}^{i} consisting of those germs that their values belong to H, i=1, 2.

Then, setting $\mathcal{I}^1/\mathcal{I}^1_H \simeq_A \mathcal{I}^1$, we get

 $H^{0}(\pi^{-1}(U), {}_{\mathcal{A}}\mathcal{I}^{1}) = \{s \mid s(\alpha, \beta) \in A, s(\alpha a, \beta b) = \overline{a}^{-1}s(\alpha, \beta)\overline{a}, a, b \in G\},\$ where \overline{a} means the class of a mod. H. Then as we know the sequence

 $H^{1}(X_{\mathcal{G}}, \mathcal{T}^{1}_{H}) \longrightarrow H^{1}(X_{\mathcal{G}}, \mathcal{T}^{1}) \longrightarrow H^{1}(X_{\mathcal{G}}, {}_{\mathcal{A}}\mathcal{T}^{1})$

No. 3]

is exact, we obtain by the corollary 1 of lemma 2, the following

Theorem 2. If G is a connected, locally connected and locally compact solvable group, and if X is a normal paracompact topological space, then $H^1(X_G, \mathcal{I}^1)$ vanishes.

Corollary. If G is a connected, locally connected and locally compact solvable group, and if X is a normal paracompact topological space, then a topological G-bundle over X always has a connection form.

3. Curvature form of an abelian bundle. In this n° , we assume that G is a connected, locally connected and locally compact abelian group and that X is a normal paracompact topological space.

By (5) of [2], if s is a connection form of an arbitrary fibre bundle η (the structure group of η need not be an abelian group), then we get

$$(4) \quad \delta_1(ts)(\alpha, \beta, \gamma)$$

$$=(\delta_1 s)(\alpha, \beta, \gamma)t(\beta \delta_1 s(\alpha, \beta, \gamma), \gamma)t(\beta, \gamma)^{-1}(\delta_1 t)(\alpha s(\alpha, \beta), \beta, \gamma),\\s \in C^1(Y_{\mathfrak{g}}, G)_{\mathfrak{g}}, t \in T^1(Y_{\mathfrak{g}}, G),$$

where Y is the base space of η (Y need not be a normal paracompact space). Therefore if s is a connection form of ξ then we can regard its curvature form $\delta_1 s$ to be an element of $C^2(X, G)$ because G is an abelian group. $\delta_1 s$ regarded as an element of $C^2(X, G)$ is denoted by $(\delta_1 s)^{\natural}$. Moreover, since δ is natural, $(\delta_1 s)^{\natural}$ belongs to $Z^2(X, G)$ and by the corollary of theorem 2 of [2], we obtain

Lemma 3. The class of $(\delta_1 s)^{\natural}$ in $Z^2(X, G)/B^2(X, G)$ does not depend on the choice of s.

Here $B^{2}(X, G) = \delta_{1}C^{1}(X, G)$.

On the other hand, by this lemma and theorem 3 of [2] (or corollary 2 of theorem 2 of [1]), we obtain

Lemma 4. ξ is induced from a representation of $\pi_1(X)$ into G if and only if ξ has a connection form s such that $(\delta_1 s)^{\natural}$ belongs to $B^2(X, G)$.

Since we get

(5) $Z^{2}(X, G)/B^{2}(X, G) \simeq H^{2}(X, R^{\mu+\nu}),$

by lemma 2 and $n^{\circ}1$ of [1], we obtain by lemma 3 and 4 Theorem 3 The following sectomer is creat

Theorem 3. The following sequence is exact.

(6) $H^{1}(X, G) \xrightarrow{i} H^{1}(X, G^{0}) \xrightarrow{\chi} H^{2}(X, R^{\mu+\nu}).$

Here i is the map induced from the inclusion $i: G \rightarrow G^0$, where G means the sheaf of germs of constant G-valued maps, χ is the map defined by

(7) $\chi(\xi) = the \ class \ of \ (\delta_i s)^{\natural} \ in \ H^2(X, R^{\mu+\nu}),$

and $H^1(X, G^0)$ is the group of all topological G-bundles on X (cf. [6]). Example. We assume that $G=C^*$, the multiplicative group of all complex numbers except 0, and the isomorphism (3) is induced from the exact sequence of sheaves

 $0 \longrightarrow Z \xrightarrow{i} C^{\circ} \xrightarrow{j} C^{*\circ} \longrightarrow 0, \qquad j(c) = \exp(c)/2\pi \sqrt{-1},$ that is the diagrams

that is the diagrams

are both commutative, then the following diagram is commutative.

$$H^2(X, Z)$$

 $H^1(X, C^{*0}) \xrightarrow{\delta \swarrow} H^2(X, C),$

where δ is the coboundary homomorphism induced from the above exact sequence. Therefore if ξ is a complex line bundle, then $\chi(\xi)$ is its first complex Chern class because $\delta(\xi)$ is the first integral Chern class of ξ (cf. [6]).

4. Topological curvature forms and characteristic classes. First we assume that $G = \Delta(n, C)$, where $\Delta(n, C)$ is the subgroup of GL(n, C) consisting of those matrices with the form

$$M = \begin{pmatrix} * & \cdot & \cdot \\ 0 & \cdot & \cdot \\ \cdot & \cdot & \cdot \\ 0 & \cdot & \cdot 0 & \cdot \\ \cdot & \cdot & \cdot \end{pmatrix}.$$

We assume that X is a normal paracompact topological space. Then a $\Delta(n, C)$ -bundle ξ over X always has a connection form by the corollary of theorem 2. Moreover, the curvature form $\delta_1 s$ of ξ defines *n*-elements c_1, \dots, c_n of $H^2(X, C)$.

If f belongs to $C^2(Y, GL(n, C))$, where Y is a topological space, then denoting the proper values of f at (x_0, x_1, x_2) by $\lambda_1(x_0, x_1, x_2), \dots, \lambda_n(x_0, x_1, x_2)$, we set

$$egin{aligned} &\widehat{\chi}_t(f) \!=\! 1 \!+\! (t/2\pi \sqrt{-1}) \sum_{i=1}^n \lambda_i(x_0,\,x_1,\,x_2) \ &+ (t/2\pi \sqrt{-1})^2 \sum_{i< j} \lambda_i(x_0,\,x_1,\,x_2) \lambda_j(x_2,\,x_3,\,x_4) \!+\! \cdots \ &+ (t/2\pi \sqrt{-1})^n \lambda_1(x_0,\,x_1,\,x_2) \lambda_2(x_2,\,x_3,\,x_4) \cdots \lambda_n(x_{2n-2},\,x_{2n-1},\,x_{2n}). \end{aligned}$$

By definition, the class of the coefficients of $\hat{\chi}_t(f)$ in $\sum_{i\geq 0} C^i(Y, C)/A$ does not depend on the order of $\lambda_1, \dots, \lambda_n$. Here A means the alternating ideal of $\sum_{i\geq 0} C^i(Y, C)$. We denote by $\chi_t(f)$ the polynomial in $\sum_{i\geq 0} (C^{2i}(Y, C)/A)t^i$ induced from $\hat{\chi}_t(f)$. Since the proper values of a matrix M are determined by the conjugate class of M, we can regard $\chi_t(\delta_1 s)$ to be a polynomial in $\sum_{i\geq 0} (C^{2i}(X, C)/A)t^i$ if sis a connection form of a GL(n, C)-bundle ξ over X by (5) of [2]. Moreover, we obtain by (4), if ξ is a $\Delta(n, C)$ -bundle, s is a connection form in $\Delta(n, C)$, then each coefficient of $\chi_t(\delta_1 s)$ is a cocycle and we get

(8)
$$\chi_t(\delta_1 s) \mod \sum_{i\geq 0} (B^{2i}(X, C)/A)t^i = \prod_{i=1}^n (1+c_i t).$$

In general, setting $F(n)=GL(n, C)/\Delta(n, C)$ and denote the projection from the associated F(n)-bundle of ξ to X by $\pi_{F(n)}$, we obtain by [7],

Theorem 4' (cf. [5]). If s is a connection of a GL(n, C)bundle ξ over X such that $\pi_{F(n)}^*(s)$ is equivalent to a $\Delta(n, C)$ valued connection of $\pi_{F(n)}^*(\xi)$, then the coefficients $\chi_t(\delta_i s)$ are belong to $\sum_{i\geq 0} Z^{2i}(X, C)/A$ and their classes mod. $\sum_{i\geq 0} B^{2i}(X, C)/A$ do not depend on the choice of s if X is compact.

5. The group $K_{\theta}(X)$. To show the coefficients of $\chi_t(\delta_1 s)$ give the complex Chern classes of ξ , a GL(n, C)-bundle over X, at least for compact X, we define the group $K_{\theta}(X) = K_{GL(n, \mathcal{O}), \theta}(X)$ to be the Grothendieck group generated by (the equivalence class of) $\delta_1(\mathcal{S}_{\xi}^1)$ for all GL(n, C)-bundles ξ over X (cf. [4], 4). Then we obtain

Lemma 5. If ξ_1, ξ_2 are GL(n, C)-bundles on $X, \delta_1(S_{\xi_1}^1)$ and $\delta_1(S_{\xi_2}^1)$ are their curvature sheaves, then $\delta_1(S_{\xi_1}^1 \oplus S_{\xi_2}^1)$ is the curvature sheaf of $\xi_1 \oplus \xi_2$.

Note. More precisely, if $\{s_{\sigma}^{1}\}$ is a connection form of ξ_{1} and $\{s_{\sigma}^{2}\}$ is a connection form of ξ_{2} then $\{s_{\sigma}^{1} \oplus s_{\sigma}^{2}\}$ is a connection form of $\xi_{1} \oplus \xi_{2}$.

By this lemma and theorem 3 of [2] or corollary 2 of theorem 2 of [1], we obtain

Lemma 6. The following sequence is exact.

 $\begin{array}{ll} (9) & 0 \longrightarrow K_{h}^{0}(X) \stackrel{i}{\longrightarrow} K_{0}^{0}(X) \stackrel{j}{\longrightarrow} K_{\theta}(X) \longrightarrow 0, \\ where \ K_{h}^{0}(X) = K_{h,GL(n,0)}^{0}(X) \ is \ the \ subgroup \ of \ K_{0}^{0}(X) \ generated \ by \\ those \ bundles \ that \ are \ induced \ from \ representations \ of \ \pi_{1}(X) \ into \\ GL(n, C), \ i \ is \ the \ inclusion \ map \ and \ j \ is \ the \ map \ defined \ by \\ (10) \qquad \qquad j([\xi]) = [\delta_{1}(S_{1}^{i})], \end{array}$

if $[\xi]$ is the class of a vector bundle ξ .

Note. Similar exact sequence is true for $K^{\circ}_{\mathbb{R}}(X)$ (cf. [1], theorem 1 and 2). Moreover, although we do not know whether there exists or not a connection form for a topological microbundle \mathfrak{X} over X, we can define the curvature sheaf of \mathfrak{X} to be a non-empty set, if X is a normal paracompact topological space. Because we can define a sheaf of groups \mathcal{F} and if X is a normal paracompact topological space then \mathfrak{X} is expressed as an element of $H^1(X, \mathcal{F})$. (The converse of this fact is also true). Therefore we can define $K_{\text{top.},\mathbf{6}}(X)$ to be the Grothendieck group generated by the curvature sheaves of topological microbundles over X if X is a normal paracompact topological space. Then we get the following exact sequence.

where $K^{0}_{h,H_{*}(n)}(X)$ is the subgroup of $K^{0}_{top}(X)$ generated by those microbundles that are induced from representations of $\pi_{1}(X)$ into $H_{*}(n)$, the group of germs at the origin of those homeomorphism f from R^{n} into R^{n} that f(0)=0.

Since we know

(11) $\chi_t(\delta_1 s \oplus \delta_1 s') = \chi_t(\delta_1 s) \chi_t(\delta_1 s'),$

we have by theorem 4' and example of $n^{\circ}3$ (cf. [6]),

Theorem 4. If X is compact and $\pi_{F(n)}^*(s)$ is equivalent to a $\varDelta(n, C)$ -valued connection of $\pi_{F(n)}^*(\xi)$, then the complex cohomology classes of the coefficients of $\chi_t(\delta_1 s)$ give the complex Chern classes of ξ .

Note. If ξ is a complex analytic vector bundle, S^1 and \mathcal{I}^1 are the sheaves of germs of holomorphic maps, then using $\chi_t(o(\xi))$, we can define the characteristic classes of ξ (cf. [3]).

References

- [1] Asada, A.: Connection of topological vector bundles. Proc. Japan Acad., 41, 919-922 (1965).
- [2] ——: Connection of topological fibre bundles. Proc. Japan Acad., 42, 13-18 (1966).
- [3] Atiyah, M. F.: Complex analytic connections in fibre bundles. Trans. Amer. Math. Soc., 85, 181-207 (1957).
- [4] Borel, A.-Serre, J. P.: Le théorèm de Riemann-Roch. Bull. Soc. Math. France, 86, 97-136 (1958).
- [5] Chern, S. S.: Characteristic classes of hermitian manifolds. Ann. Math., 47, 85-121 (1946).
- [6] Hirzebruch, F.: Neue Topologische Methoden in der Algebraische Geometry. Berlin (1956).
- [7] Leray, J.: Sur l'homologie des groupes de Lie, des espaces homogènes et des espaces fibrés principaux. Colloque de Topologie. Bruxelles, pp. 101-115 (1950).
- [8] Pontrjagin, L.: Topological Groups. Princeton (1946).