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1. Introduction. It is well known that a linear space can be
represented using properties of the lattice 4 of all subspaces. Pro-
perties of certain lattice subsets of 4 are used here to realize this
representation., These subsets are designated as point-closed subsys-
tems and a point-modular point-complemented irreducible lattice of
length=4 is shown to be a characterization of such a point-closed
subsystem. Then a point-modular point-complemented lattice L is
decomposed into a subdirect union of point-modular point-complemented
irreducible lattices and in the case that L is complete into the direct
union. This generalizes the classical representation theory for lat-
tices of the type 4.

In an application of these results the family of finite dimensional
subspaces of a linear space, being a point-closed subsystem of the
lattice of all subspaces, is characterized lattice-theoretically. A second
application is made to the linear systems of G. W. Mackey [5] for
which he states conditions that a family of subspaces of a (real)
linear space be the family of closed subspaces relative to some
regular linear system constructed on the linear space. Such a family
forms a point-closed subsystem and can be used in the description of
the linear space. Thus the family of closed subspaces of a regular
linear system is characterized lattice-theoretically without the linear
space being given explicitly.

The lattice-theoretic notions not defined here or for which no
reference is given are in agreement with those of Birkhoff [2]. Let
the system (L, +, ) be a lattice. For ScL and b,ce L, (b, ¢) Mg
(read (b, ¢) modular relative to S) means (a-+b)e=a+be for every
ae S such that a<e. For a,be L,a>b (dually, b<a) is written
for a covers b. The notations v and A are set-theoretic union
and intersection.

2. Point-modularity and point-complementation. In this
section (L, +, ) is a lattice with zero 0 and P the set of points
in L. The relation M, is called point-modularity and L is said
to be point-modular if M,=LxL. Also L is said to be point-
complemented if for a,be L such that a<b there exists p>0 such
that p<b, pZLa. The following brief development is used later.

Lemma 1. If L is point-complemented and b,ce L such that
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(b,e)M,, b<b+c then be<e.

Proof. Let bZec. Suppose be<a<e. Then be=ba and b+c=
b+a. Let p>0 such that p<a, p£Lba. Then pLband b=p-+b=<b-+c,
whence p+b=b+c since b=p+b implies p=<b. Now (p+b)=
(b+c)e=c>a=p+bc contrary to (b, ¢)Mp. Thus be<e.

It now can be shown that for L point-modular and point-
complemented the Jordan-Dedekind chain condition holds. (This is
done in [3] with the dual condition: bc<c¢ implies b<b-+¢.) This
generalizes results of K. Menger [7] for which he uses relative
complementation. The latter (with atomicity) is stronger than point-
complementation and too strong for the application made to linear
gystems in Section 6. Further, for L point-complemented and of
finite length, L is modular if and only if it is point-modular,

3. Point-closed subsystems. In this section (4, U, N) is a
complete complemented modular atomic lattice with zero 0 and unit
1 which satisfies
(1) if Ac4, p>~0 such that p<UA then p< B for some finite

BCA.
Two properties of the lattice of all subspaces of a linear space (of
dimension=3) introduced later but not needed here are irreducibility
[4, p. 453] and length=4.

A set LA is said to be a point-closed subsystem of A if (a)
0eL; (b) for a,be L,anbe L (write anNb=ab); (¢) for a,be L,
L.u.b. {a, b} exists with respect to the elements of L (write l.u.b.
{a, b}=a+0b); (d) for ac L and p>0,pUac L. In the remainder of
this section L is to be a point-closed subsystem of 4. Then all the
elements of 4 of finite dimension are in L.

Theorem 1. The system (L, +, +) is a point-modular point-
complemented lattice.

Proof. It is immediate that the system is a lattice. For the
point-modularity let b, ¢, pe L with 0<p=ec. Then

(+d)e=(pUd)Ne=pU(dNe)=p+bec,
whenece (b, ¢c)M,. The point-complementation follows from the com-
plementation and atomicity of 4.

For ac 4 define F(a)={xe L: <@, dim x<}, Then for ac 4,
a=UF(a). (This is essentially a theorem of Orrin Frink, Jr. [4,
Theorem 8].) Thus A={UF(a): ac 4}. It is in this sense that 4
is considered to be generated by L. To free the discussion from
elements of 4—L it is noted that F'(a) is an ideal in L that con-
tains only elements of finite dimension, and conversely, it is proved
in the next theorem that such an ideal is a set of the type F'(a).
These ideals are used when imbedding, as a point-closed subsystem,
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an abstractly described lattice L into a lattice of the type 4.

Theorem 2. If A is an ideal in L that contains only ele-
ments of finite dimension then A=F(a) for some a€ A.

Proof. Define a=JA. Certainly, ACF(a). Let y<c F(a). Then
y=<UA. Since dimy< oo, there exists finite BC A such that y=<UB
by virtue of (1). Hence ye A and F'(a)C A.

4. The general representation theory. The lattice L is now
described abstractly using properties of the last section and is shown
to be contained (isomorphically) as a point-closed subsystem in a lat-
tice of the type 4. Throughout this section (L, +,:) is a point-
modular point-complemented lattice with zero 0.

For ae L define P(a)={pe L: p>0,p=<a}. Then for acL,a=
S1P(a) because aZb for any other upper bound b of P(a) implies
existence of p>0 such that p£b and p=a, a contradiction. (This
is a generalization of the previously mentioned theorem of Frink.)
In light of the results and comments of Section 2 it is meaningful
to use the notion of the dimension of an element.

For Tc L define [ T] to be the smallest ideal containing T. Also
define I={a e L: dim a<< «} and ¢={0}, Then I=[{pe L: p>0}]. De-
fine .L to be the set of all ideals of L that are subsets of I and
S={[P(a)]:ac L}, For a, B .L define a<pB to mean a¢C B, aUB=
[avB],anB=aANB. It is immediate that (L, U, N) is a complete
lattice with zero ¢ and unit I; for ae L, a=[{peca: p>0}]; and
Sc .l

Lemma 2. The lattice L is complemented, modular, atomic,
and satisfies (1).

Proof. For the complementation let e L, An application of
Zorn’s Lemma yields BSe L such that anNnB=¢ and B’ > implies
anfB +#¢. To show aUB=I let p>0. Also let p¢B; otherwise,
pelavB]. Now B<BU[P(p)]. Thus an(BULP(p)])*¢, whence
there exists y € @ such that y+0, y<b+p for some be B. Suppose
Y+b<b+p. Then b=y-+b since b<b+p, whence y<b. Thus ye
a N B contrary to y=0. Hence y+b=>b+p=p and pe[a\VvB]. Thus
Is[avB]=aUp.

The proof of the modularity is similar to that for the lattice
of all ideals in a modular lattice. The point-modularity is sufficient
in the place of modularity since the ideals considered here contain
only elements of finite dimension.

The atomicity follows from the point-complementation.

Finally, for (1) let a;€ L for je 4 and © be a point in L such
that 7= U ga;. Define 8={wre L:we Uqa; for some finite JICJ}.
Obviously, S U g% The set 8 is an ideal containing «; for every
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jed. Thus Uga;CBand f=U 4a,. Let z=[P(p)] for some p>0.
Then pe 8, whence pe U ya; for some finite K4, ie., n=U 4 a;.
This completes the proof of the lemma,

Lemma 3. The set S is a point-closed subsystem of L and
L s isomorphic to S under a—[P(a)].

Proof. The first part is immediate. For the remainder let
a,be L. If a<b then P(a)c P(b), whence [P(a)]=[P(b)]. Con-
versely, let [P(a)]=[P(b)]. Also let pe P(a); otherwise, if P(a)
is empty, a=0=b. Now pe[P(a)], whence pe [P(b)]. This im-
plies p=b; thus pe P(b). Hence P(a)c P(b). Now a=>) Pla)=
ST P(b)=>b. Thus the mapping is an isomorphism.

These results are summarized in the following theorem which
is similar to an imbedding theorem of Frink [4, Theorem 14] in
that both extension lattices are of the same type. However, he
imbeds a complemented modular lattice (not necessarily atomic) while
here the imbedded lattice is point-modular and point-complemented
(necessarily atomic but not necessarily complemented and modular).

Theorem 3. The lattice L is isomorphic to a point-closed
subsystem of a lattice of the type A of Section 3; A is unique up
to isomorphism.,

If the lattice 4 of Section 3 is in addition irreducible and of
length=4 then every point-closed subsystem is. Conversely, if the
lattice L of the present section is irreducible and of length=4 then
its extension L is. Reinhold Baer [1] shows that such a 4 is
isomorphic to the lattice of all subspaces of a linear space, the lat-
ter being unique up to isomorphism. These comments and Theorem
3 yield the following representation theorem.

Theorem 4. If L is a point-modular point-complemented irre-
ducible lattice of length=4 then L is isomorphic to a point-closed
subsystem of the lattice of all subspaces of some linear space, the
latter being unique up to isomorphism.

A decomposition into irreducible lattices is now given. Com-
ments similar to those preceding Theorem 3 can be made about the
comparison of these results with Theorem 15 of Frink [4]. (See
[4, p. 466] for the meaning of subdirect union.) The second part
of Theorem 5 is a generalization of a part of Theorem 2 of J. E.
MecLaughlin [6]. Finally, Theorems 4 and 5 give a generalization
beyond that of McLaughlin [6] of the classical representation theory
for complete complemented modular atomic lattices satisfying (1).

Theorem 5. If L is a point-modular point-complemented lat-
tice then L is 1somorphic to a subdirect union of a family of point-
modular point-complemented irreducible lattices. Moreover, L is
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1somorphic to the direct union and each member of the family is
complete if L is complete.

Proof. Let [ be isomorphic to Xe4-L;, the direct union of
irreducible lattices of the type 4 of Section 3 [4, pp. 453-456].
For 1€ define p,=U-L; and S;={g;Na:aeS}. Then S, is a
point-closed subsystem of _£;, whence each S; is point-modular,
point-complemented and irreducible. Define T, a mapping of S into
XiegSi, as follows: for ae S, a"=(;Na:te ). T is easily seen
to be an isomorphism between S and a sublattice of XiesS;. Since
L and S are isomorphic, the proof of the first part is complete.

Let L be complete. Then S is complete; hence each S; is. To
show that T is onto let z;€S; and define a=U;eqy7;€-L. Then
a=U{re L p<m=7; for some ieIJ}eS. The proof of r,=p;Na
follows that of Theorem 2 of McLaughlin [6]. This completes the
proof.

5. Family of finite dimensional subspaces. The family of
finite dimensional subspaces of a linear space can be readily shown
to be a point-closed subsystem of the lattice of all subspaces. Thus
if the lattice L of Theorem 4 satisfies in addition the descending
chain condition, it follows that L is isomorphic to the particular
point-closed subsystem consisting of the finite dimensional subspaces
of some linear space. Again the latter is unique up to isomorphism,

6. Linear systems. The linear systems of G. W. Mackey [5]
can be considered over arbitrary division rings, not necessarily the
real field, The theory is essentially the same and includes the fol-
lowing relevant properties: if S and T are closed subspaces of a
linear system and = an element of the linear space then SA T and
the subspace spanned by S\/{x} are closed; the zero dimensional
subspace of a linear system is closed if and only if the linear sys-
tem is regular. Thus the family of closed subspaces of a regular
linear system is a point-closed subsystem of the lattice of all sub-
spaces.

Further, a family S of subspaces of a linear space X is the
family of closed subspaces relative to some linear system con-
structed on X if and only if it satisfies the following: (a) for
gcS, NTeS; (b) for SeS and xe X, the subspace spanned by
Svi{z} is in S; (e¢) every SeS such that S#X is an intersection
of members of § which are hyperplanes in the lattice of all sub-
spaces. (A hyperplane in the lattice of all subspaces of a linear
space is a subspace with deficiency one.) Finally, two regular
linear systems are isomorphic if and only if their lattices of eclosed
subspaces are isomorphic.
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These properties and Theorem 4 yield the following representa-
tion theorem which is the same as the second part of Theorem 2
of McLaughlin [67]; the hypotheses are formally different but easily
seen to be equivalent. However, the objectives leading to the state-
ments of the theorem and the techniques employed in its proofs are
quite different.

Theorem 6. If L is a complete point-modular irreducible
lattice (with zero 0 and unit 1) of length=4 which satisfies
(2) foracL,>{peL:p=a,p>0}=1]{heL:h=a, h<1},
then L is tsomorphic to the lattice of closed subspaces of a regular
linear system, the latter being unique up to isomorphism.

Proof. It is a consequence of (2) that for

aeL,>{peL:p=a,p>0t=a=][[{hec L: h=a, h<1}.
This is equivalent to the combined conditions that L is point-
complemented and for ae L with a=1, a is the g.l.b. of some set
of hyperplanes of L. It now follows that L is isomorphic to a
point-closed subsystem S of the lattice of all subspaces of some linear
space X; this S is the family of closed subspaces of some linear
system constructed on X; this linear system is regular,
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