48. On Propagation of Regularity in Space-variables for the Solutions of Differential Equations with Constant Coefficients

By Hitoshi KUMANO-GO

Department of Mathematics, Osaka University (Comm. by Kinjirô KUNUGI, M.J.A., March 12, 1966)

Introduction. Let $P(D_t, D_x)$ be a differential operator with constant coefficients for which the plane: t = 0 is characteristic. In the note [4] K. Shinkai and the author characterized this operator P through the Gevrey class $G(\alpha)$ ($-\infty \leq \alpha < 1$), with respect to space-variables, in which null solutions¹⁾ of Pu=0 are able to exist.

In this note we are concerned with the converse problem: 'Is it possible to construct a null solution such that its derivative of some order has the discontinuity with respect to space-variables at some point $(t_0, x_0)(t_0 > 0)$?' Here we give a negative answer for this problem in the sense of Theorem 1. For example, the solutions of the wave equation $(\partial^2/\partial t \partial x)u=0$ have the form u(t, x)=f(t)+g(x). Hence, if a solution of $(\partial^2/\partial t \partial x)u=0$ is analytic in x for negative t, then, necessarily, it is analytic in x for positive t. But, in order to generalize this phenomena, it is necessary to discuss the propagation of regularily, which has been studied by F. John [3], B. Malgrange [5], L. Hörmander [2], and J. Boman [1], with respect to only the space-variables. We shall use L^1 -estimates according to J. Boman. The details will be published in the Funkcialaj Ekvacioj.

§1. Notations and preliminary lemmas. Let $(t, x) = (t, x_1, \dots, x_{\nu})$ be a point in the Euclidean $(1+\nu)$ -space $R^{1+\nu}$, $\xi = (\xi_1, \dots, \xi_{\nu})$ be a point in the dual space E^{ν} of R^{ν} , and $\alpha = (\alpha_1, \dots, \alpha_{\nu})$ be a real vector whose elements are non-negative integers. We shall use notations:

 $(D_t, D_x) = (D_t, D_{x_1}, \dots, D_{x_\nu}) = (-i\partial/\partial t, -i\partial/\partial x_1, \dots, -i\partial/\partial x_\nu),$ $|\alpha| = \alpha_1 + \dots + \alpha_\nu, \alpha! = \alpha_1! \dots \alpha_\nu!, x \cdot \xi = x_1\xi_1 + \dots + x_\nu\xi_\nu,$ $D_x^{\alpha} = D_{x_1}^{\alpha_1} \dots D_{x_\nu}^{\alpha_\nu}, \xi^{\alpha} = \xi_1^{\alpha_1} \dots \xi_{\nu}^{\alpha_\nu}.$

For a function $v(x) \in C_0^{\infty}(R^{\nu})$ we define the Fourier transform $\widetilde{v}(\xi)$ by

$$\widetilde{v}(\xi) = \frac{1}{\sqrt{2\pi^{\nu}}} \int_{\mathbb{R}^{\nu}} \mathrm{e}^{-ix \cdot \xi} v(x) dx$$

¹⁾ A C^{∞} -solution u of Pu=0 is called a null solution, if $u\equiv 0$ for $t\leq 0$ and $u\neq 0$ for t>0.

and for a function $u(t, x) \in C_0(R^{1+\nu})$ define the partial Fourier transform $\tilde{u}(t, \xi)$ by

$$\widetilde{u}(t,\,\xi) = \frac{1}{\sqrt{2\pi^{\nu}}} \int_{R^{\nu}} e^{-ix\cdot\xi} u(t,\,x) dx.$$

Lemma 1. Let $P(\lambda, \xi)$ be a differential polynomial of the form (1) $P(\lambda, \xi) = Q_m(\xi)\lambda^m + Q_{m-1}(\xi)\lambda^{m-1} + \cdots + Q_0(\xi)$ $(m \ge 1, Q_m(\xi) \ne 0).$

Then, for any real number a, b and positive function $\gamma(\xi)$ we have

(2)
$$\int_{E^{\mathcal{V}}} \gamma(\xi)^{a-bt_0} | Q_m(\xi) \widetilde{u}(t_0, \xi) | d\xi$$
$$\leq T_0^{m-1} \int_0^{T_0} \int_{E^{\mathcal{V}}} \gamma(\xi)^{a-bt} P(D_t, \xi) \widetilde{u}(t, \xi) d\xi dt$$
$$(T > 0, t \in (0, T), \ u \in C^{\infty}$$

 $(T_0 > 0, t_0 \in (0, T_0), u \in C_0^{\infty} \text{ in } (0, T_0) \times R^{\nu}).$

Proof. For a function $f(t) \in C_0^{\infty}$ in $(0, T_0)$, a complex number λ and real numbers μ , η , we set $g(t) = e^{\mu - i\lambda t} f(t)$, then $D_t g(t) = e^{\mu - i\lambda t} (D_t - \lambda) f(t)$. Then, we have $e^{\mu - \eta t_0 + (\Im_m \lambda + \eta) t_0} |f(t_0)| = |g(t_0)|$

$$\leq \operatorname{Min}\left\{\int_{0}^{t_{0}} |D_{t}g(t)| dt, \int_{0}^{t_{0}} |D_{t}g(t)| dt\right\}$$

$$\leq \operatorname{Min}\left\{\int_{0}^{t_{0}} e^{\mu - \eta t + (\Im_{\mathfrak{M}} \lambda + \eta)t} |(D_{t} - x)f(t)| dt, \int_{t_{0}}^{T_{0}} e^{\mu - \eta t + (\Im_{\mathfrak{M}} \lambda + \eta)t} |(D_{t} - \lambda)f(t)| dt\right\},$$
where $\Im_{t_{0}}$ denotes the imaginary part of λ

where $\mathfrak{S}_{\mathfrak{m}}\lambda$ denotes the imaginary part of λ . Considering two cases $(\mathfrak{S}_{\mathfrak{m}}\lambda+\eta) \ge 0$ and $(\mathfrak{S}_{\mathfrak{m}}\lambda+\eta) < 0$, we have

$$(3) \qquad \qquad \mathbf{e}^{\mu-\eta t_0} |f(t_0)| \leq \int_0^{\circ} \mathbf{e}^{\mu-\eta t} |(D_t-\lambda)f(t)| dt$$

If we write

$$P(D_t, \xi)\widetilde{u}(t, \xi) = Q_m(\xi) \prod_{j=1}^m (D_t - \lambda_j(\xi)) \widetilde{u}(t, \xi)$$

and set $\mu = a \log \gamma(\xi)$ and $\eta = b \log \gamma(\xi)$, we get (2) by the repeated application of (3).

Lemma 2. Let $Q(\xi)$ be a differential polynomial (of order $s \ge 0$) with the principal part $Q^{(0)}(\xi)$, and let Ξ be a bounded domain in \mathbb{R}^{ν} with the diameter $d=d(\Xi)$. Then we have

$$(4) \qquad \qquad \int_{E^{\mathcal{V}}} |\widetilde{v}(\xi)| d\xi \leq A_{q,d} \int_{E^{\mathcal{V}}} |Q(\xi) \widetilde{v}(\xi)| d\xi, \ v \in C_0^{\infty}(\Xi)$$

where $A_{Q,d} = \left(\frac{4d}{\pi}\right)^s (\max_{|\xi|=1} Q^{(0)}(\xi))^{-1}.$

Proof. After the orthogonal transformation we may assume

$$Q(\xi) \!=\! q_s \xi_1^s \!+\! \sum_{j=0}^{s-1} q_j(\widetilde{\xi}) \xi_j$$

where q_s is a complex constant such that $|q_s| = \max_{|\xi|=1} |Q^{(0)}(\xi)|$ and $q_j(\tilde{\xi}) (0 \le j \le s-1)$ are polynomials in $\tilde{\xi} = (\xi_2, \dots, \xi_{\nu})$. Let $h(x_1)$ be a function of class C_0^{∞} in (r, r+d) for some real r. Then, for any complex number τ , we have

H. KUMANO-GO

$$(\xi_1 - \tau) \, \widetilde{h}(\xi_1) \, |d\xi_1 \ge R \! \int_{\mathcal{B}^1} | \, \widetilde{h}(\xi_1) \, |d\xi_1 - R \! \int_{|\xi_1 - \tau| \le R} | \, \widetilde{h}(\xi_1) \, |d\xi_1 - \tau| \leq R \! \int_{|\xi_1 - \tau| \le R} | \, \widetilde{h}(\xi_1) \, |d\xi_1 - \tau| \leq R \! \int_{|\xi_1 - \tau| \le R} | \, \widetilde{h}(\xi_1) \, |d\xi_1 - \tau| \leq R \! \int_{|\xi_1 - \tau| \le R} | \, \widetilde{h}(\xi_1) \, |d\xi_1 - \tau| \leq R \! \int_{|\xi_1 - \tau| \le R} | \, \widetilde{h}(\xi_1) \, |d\xi_1 - \tau| \leq R \! \int_{|\xi_1 - \tau| \le R} | \, \widetilde{h}(\xi_1) \, |d\xi_1 - \tau| \leq R \! \int_{|\xi_1 - \tau| \le R} | \, \widetilde{h}(\xi_1) \, |d\xi_1 - \tau| \leq R \! \int_{|\xi_1 - \tau| \le R} | \, \widetilde{h}(\xi_1) \, |d\xi_1 - \tau| \leq R \! \int_{|\xi_1 - \tau| \le R} | \, \widetilde{h}(\xi_1) \, |d\xi_1 - \tau| \leq R \! \int_{|\xi_1 - \tau| \le R} | \, \widetilde{h}(\xi_1) \, |d\xi_1 - \tau| \leq R \! \int_{|\xi_1 - \tau| \le R} | \, \widetilde{h}(\xi_1) \, |d\xi_1 - \tau| \leq R \! \int_{|\xi_1 - \tau| \le R} | \, \widetilde{h}(\xi_1) \, |d\xi_1 - \tau| \leq R \! \int_{|\xi_1 - \tau| \le R} | \, \widetilde{h}(\xi_1) \, |d\xi_1 - \tau| \leq R \! \int_{|\xi_1 - \tau| \le R} | \, \widetilde{h}(\xi_1) \, |d\xi_1 - \tau| \leq R \! \int_{|\xi_1 - \tau| \le R} | \, \widetilde{h}(\xi_1) \, |d\xi_1 - \tau| \leq R \! \int_{|\xi_1 - \tau| \le R} | \, \widetilde{h}(\xi_1) \, |d\xi_1 - \tau| \leq R \! \int_{|\xi_1 - \tau| \le R} | \, \widetilde{h}(\xi_1) \, |d\xi_1 - \tau| \leq R \! \int_{|\xi_1 - \tau| \le R} | \, \widetilde{h}(\xi_1) \, |d\xi_1 - \tau| \leq R \! \int_{|\xi_1 - \tau| \le R} | \, \widetilde{h}(\xi_1) \, |d\xi_1 - \tau| \leq R \! \int_{|\xi_1 - \tau| \le R} | \, \widetilde{h}(\xi_1) \, |d\xi_1 - \tau| \leq R \! \int_{|\xi_1 - \tau| \le R} | \, \widetilde{h}(\xi_1) \, |d\xi_1 - \tau| \leq R \! \int_{|\xi_1 - \tau| \le R} | \, \widetilde{h}(\xi_1) \, |d\xi_1 - \tau| \leq R \! \int_{|\xi_1 - \tau| \le R} | \, \widetilde{h}(\xi_1) \, |d\xi_1 - \tau| \leq R \! \int_{|\xi_1 - \tau| \le R} | \, \widetilde{h}(\xi_1) \, |\xi_1 - \tau| \leq R \! \int_{|\xi_1 - \tau| \le R} | \, \widetilde{h}(\xi_1) \, |\xi_1 - \tau| \leq R \! \int_{|\xi_1 - \tau| \le R} | \, \widetilde{h}(\xi_1) \, |\xi_1 - \tau| \leq R \! \int_{|\xi_1 - \tau| \le R} | \, \widetilde{h}(\xi_1) \, |\xi_1 - \tau| \leq R \! \int_{|\xi_1 - \tau| \le R} | \, \widetilde{h}(\xi_1) \, |\xi_1 - \tau| \leq R \! \int_{|\xi_1 - \tau| \le R} | \, \widetilde{h}(\xi_1) \, |\xi_1 - \tau| \leq R \! \int_{|\xi_1 - \tau| \le R} | \, \widetilde{h}(\xi_1) \, |\xi_1 - \tau| \leq R \! \int_{|\xi_1 - \tau| \le R} | \, \widetilde{h}(\xi_1) \, |\xi_1 - \tau| \leq R \! \int_{|\xi_1 - \tau| \le R} | \, \widetilde{h}(\xi_1) \, |\xi_1 - \tau| \leq R \! \int_{|\xi_1 - \tau| \le R} | \, \widetilde{h}(\xi_1) \, |\xi_1 - \tau| \leq R \! \int_{|\xi_1 - \tau| \le R} | \widetilde{h}(\xi_1) \, |\xi_1 - \tau| \le R \! \int_{|\xi_1 - \tau| \le R} | \widetilde{h}(\xi_1) \, |\xi_1 - \tau| \le R \! \int_{|\xi_1 - \tau| \le R} | \widetilde{h}(\xi_1) \, |\xi_1 - \tau| \le R \! \int_{|\xi_1 - \tau| \le R} | \widetilde{h}(\xi_1) \, |\xi_1 - \tau| \le R \! \int_{|\xi_1 - \tau| \le R} | \widetilde{h}(\xi_1) \, |\xi_1 - \tau| \le R \! \int_{|\xi_1 - \tau| \le R} | \widetilde{h}(\xi_1) \, |\xi_1 - \tau| \le R \! \int_{|\xi_1$$

where

$$\widetilde{h}(\xi_1) = \frac{1}{\sqrt{2\pi}} \int_{\mathbb{R}^1} \mathrm{e}^{-ix_1\xi_1} h(x_1) dx_1.$$

On the other hand

$$\mid \widetilde{h}(\xi_1) \mid \hspace{-0.5cm} \leq \hspace{-0.5cm} rac{1}{\sqrt{2\pi}} \int_{\gamma}^{\gamma+d} \mid h(x_1) \mid \hspace{-0.5cm} dx_1 \hspace{-0.5cm} \leq \hspace{-0.5cm} rac{d}{2\pi} \int_{E^1} \mid \widetilde{h}(\xi_1) \mid \hspace{-0.5cm} d\xi_1.$$

Hence, setting $R = \pi/(2d)$, we have

$$\int_{\mathbb{F}^1} |\left(\hat{\xi}_1\!-\! au
ight)\widetilde{h}(\hat{\xi}_1)|d\hat{\xi}_1\!\ge\!\!rac{\pi}{4d}\!\int_{\mathbb{F}^1} |\widetilde{h}(\hat{\xi}_1)|d\hat{\xi}_1,$$

so that we have

$$egin{aligned} &\int_{E^{\mathcal{V}}} | \, Q(\xi) \; \widetilde{v}(\xi) \; | d\xi = &\int_{E^{\mathcal{V}-1}} \Bigl\{ \int_{E^1} | \; q_s \prod_{j=1}^s \left(\xi_1 - au_j(\widetilde{\xi})
ight) \; \widetilde{v}(\xi_1, \, \widetilde{\xi}) \; | \, d\xi_1 \Bigr\} d\widetilde{\xi} \ & \geq & \mid q_s \; | \left(rac{\pi}{4d}
ight)^s \! \int_{E^{\mathcal{V}}} | \; \widetilde{v}(\xi) \; | d\xi. \end{aligned}$$
 Q.E.D.

Lemma 3. Let Ξ be a bounded domain in R^{ν} . Then, for $k = -(\nu+1), \dots, 0, 1, \dots$, we have

$$(5) \qquad \int_{E^{\nu}} (1+|\xi|)^k |\widetilde{v}(\xi)| d\xi \leq A_{\nu, \beta} 2^k \max_{|\beta| \leq k+\nu+1} D_x^{\beta} v |, \ v \in C_0^{\infty}(E),$$

where $A_{\nu,\varepsilon} = 2(2/\pi)^{\nu/2} \max(\Xi) \int_{E^{\nu}} (1+|\xi|)^{-(\nu+1)} d\xi$ and $meas(\Xi)$ denotes the measure of Ξ .

Proof. We have

$$\begin{split} & \int_{E^{\nu}} (1+|\,\xi\,|)^k |\,\,\widetilde{v}(\xi)\,|\,d\xi \leq \left(\int_{E^{\nu}} (1+|\,\xi\,|)^{-(\nu+1)}\,d\xi \right) \sup_{\xi\in E^{\nu}} (1+|\,\xi\,|)^{k+\nu+1} |\,\,\widetilde{v}(\xi)\,|, \\ & (1+|\,\xi\,|)^{k+\nu+1} |\,\,\widetilde{v}(\xi)\,| \leq 2^{k+\nu+1} \max_{|\beta|\leq k+\nu+1} |\,\xi^{\beta}\widetilde{v}(\xi)\,| \\ & \text{ad} \end{split}$$

and

$$|\xi^{\beta}\widetilde{v}(\xi)| \leq \frac{1}{\sqrt{2\pi^{\nu}}} \int_{E^{\nu}} |D_{x}^{\beta}v(x)| dx.$$

Hence, we get easily (5).

Q.E.D.

§ 2. Propagation of regularity. Let Ξ be a bounded domain in R^{ν} and set $\Omega_{T_0} = (0, T_0) \times \Xi$ $(T_0 > 0)$.

Theorem 1. Let u(t, x) be a classical solution of $P(D_t, D_x)u(t, x) = f(t, x)$ for $f \in C(\Omega_{T_0})$.

Assume that f is infinitely differentiable in x for any fixed $t \in (0, T_0)$ and the mapping

(6) $f: (0, T_0) \ni t \longrightarrow f(t, \cdot) \in \mathcal{E}(\Xi)$

is continuous,²⁾ furthermore assume that, for some constant $\delta > 0$, $D_i^j u(j=0, \dots, m-1)$ are infinitely differentiable function of x in

206

[Vol. 42,

²⁾ We call the mapping $f: (0, T_0) \ni t \to f(t, \cdot) \in \mathcal{E}(\Xi)$ is continuous, if, for any fixed compact set K of Ξ , α and $t_0 \in (0, T_0)$, $D_x^{\alpha} f(t, x) \to D_x^{\alpha} f(t_0, x)$ as $t \to t_0$ uniformly on K.

No. 3] Propagation of Regularity for Solutions of Differential Equations 207

$$((0, \delta) \times \Xi) \cup ((0, T_0) \times \Xi_{\delta})^{s_0} \text{ and the mappings}$$

$$(7) \qquad D_i^j u: \begin{cases} (0, \delta) \ni t \longrightarrow D_i^j u(t, \cdot) \in \mathcal{E}(\Xi) \\ (0, T_0) \ni t \longrightarrow D_i^j u(t, \cdot) \in \mathcal{E}(\Xi_{\delta}) \\ (j=0, 1, \cdots, m-1) \end{cases}$$

are continuous.

Then, $D_i^j u(t, x)$ $(j=0, 1, \dots, m)$ are infinitely differentiable functions of x in Ω_{r_0} and the mappings

(8) $D_t^j u: (0, T_0) \ni t \rightarrow D_t^j u(t, \cdot) \in \mathcal{E}(\Xi)$ $(j=0, 1, \cdots, m)$ are continuous.

Proof. We fix T, T', T'', and δ' such that $0 < T < T' < T_0$ and $0 < \delta' < \delta$. Take a function $\Psi(t, x) \in C_0^{\infty}(\Omega_{T_0})$ such that $\Psi \equiv 1$ in $(\delta', T'') \times (\Xi - \Xi_{\delta'})$ where $\Xi - \Xi_{\delta'} = \{x; x \in \Xi, x \notin \Xi_{\delta'}\}$.

Set $U = \Psi u$, then

$$(9) P(D_t, D_x)U = \Psi f + f' \equiv F,$$

where

$$f' = \sum_{j+|\alpha|\neq 0} \frac{1}{j!\alpha!} D_i^j D_x^{\alpha} \varPsi \cdot P^{(j,\alpha)}(D_i, D_x) u \Big(P^{(j,\alpha)}(\lambda, \xi) = \frac{\partial^{j+|\alpha|}}{\partial \lambda^j \partial \xi^{\alpha}} P(\lambda, \xi) \Big).$$

Since $f' \equiv 0$ in $(\delta', T'') \times (\Xi - \Xi_{\delta'})$, we see, by the assumption of Theorem 1, that $F \in C_0(\Omega_{T_0})$ and a infinitely differentiable function of x in $\Omega_{T''} = (0, T'') \times \Xi$, and that, for any α and $t_0 \in (0, T'')$, $(10) \qquad D_x^{\alpha} F(t, x) \rightarrow D_x^{\alpha} F(t_0, x)$ as $t \rightarrow t_0$ uniformly in Ξ . Set $\alpha = (n + \nu + 1)T'/(T' - T)$, $b = (n + \nu + 1)/(T' - T)$. Then we have

(11) $a-bt \leq a$ in $(0, T_0)$, $\geq n$ in (0, T), $\leq -(\nu+1)$ in (T', T_0) . Approximating U by $U_n \in C_0^{\infty}(\Omega_{T_0})$ and applying (2) to U_n by setting $\gamma(\xi) = (1+|\xi|)$, we get by (11)

(12)
$$\int_{E^{\nu}} (1+|\xi|)^{n} |Q_{m}(\xi) \widetilde{U}(t_{0},\xi)| d\xi \\ \leq T_{0}^{m-1} \Big\{ \int_{0}^{T'} \int_{E^{\nu}} (1+|\xi|)^{a} |\widetilde{F}(t,\xi)| d\xi dt \\ + \int_{T'}^{T_{0}} \int_{E^{\nu}} (1+|\xi|)^{-(\nu+1)} |\widetilde{F}(t,\xi)| d\xi dt \Big\}$$

for every $t_0 \in (0, T)$.

By Lemma 2 and 3 we have for $|\alpha| = n$

$$\begin{array}{l} |D_{x}^{\alpha}U(t_{0},x)| \leq \frac{1}{\sqrt{2\pi^{\nu}}} \int_{\mathbb{B}^{\nu}} |\widetilde{D_{x}^{\alpha}}U(t,\xi)| d\xi \\ \leq T_{0}^{m-1}A_{\varrho_{m},\nu,\mathcal{S}} \Big\{ 2^{\alpha} \int_{0}^{T'} \underset{\substack{|\beta| \leq \alpha+\nu+1\\ \sigma \in \mathcal{S}}}{\overset{|\alpha|}{\longrightarrow}} |D_{x}^{\beta}F(t,x)| dt + 2^{-(\nu+1)} \int_{T'}^{T_{0}} \underset{\substack{|\alpha| \leq \alpha\\ T' = x \in \mathcal{S}}}{\overset{|\alpha|}{\longrightarrow}} |F(t,x)| dt \Big\} \end{array}$$

for $t_0 \in (0, T)$. Since we can take *n* arvitrarily large, we get, in $(\delta', T) \times (\Xi - \Xi_{\delta'})$, $u(t_0, x) = U(t_0, x)$ is a infinitely differentiable function of *x*. Letting $T \rightarrow T_0$, we get by (7) that u(t, x) is a infinitely

³⁾ $\Xi_{\delta} = \{x \in \Xi; \operatorname{dis}(x, \partial \Xi) < \delta\}$ where $\operatorname{dis}(x, \partial \Xi)$ means the distance from x to the boundary $\partial \Xi$ of Ξ ,

differentiable function of x in

 $\Omega_{T_0} = ((0, \delta) \times \Xi) \cup ((0, T_0) \times \Xi_{\delta}) \cup ((0, T_0) \times (\Xi - \Xi_{\delta'})).$

In order to prove the continuity of the mappings (8), we use (13) by replacing U(t) by (U(t+h)-U(t)). Then P(U(t+h)-U(t)) =(F(t+h)-F(t)). By (10) we see that (13) has meaning for h < T''-T', so that we have

 $D_x^{\alpha}u(t_0+h) \rightarrow D_x^{\alpha}u(t_0)$ as $h \rightarrow 0$

uniformly in $(\delta', T) \times (\Xi - \Xi_{\delta'})$ for any fixed α . Hence, letting $T \rightarrow$ T_{\circ} we get the continuity of the mapping $u: (0, T_{\circ}) \ni t \longrightarrow u(t, \cdot) \in \mathcal{E}(\Xi)$. Next, setting $u_1 = D_t u$, we have $P_1(D_t, D_x)u_1 \equiv \sum_{j=1}^m Q_j(D_x)D_t^{j-1}u_1 = (f - Q_0(D_x)u) \equiv f_1$. Then u_1 and f_1 satisfy the conditions of Theorem 1, so that the mapping

$$D_t u = u_1: (0, T_0) \ni t \longrightarrow u_1(t, \cdot) \in \mathcal{E}(\Xi)$$

is continuous, and so on we get the continuity of the mappings $(j=2, \dots, m-1).$ $D_t^j u: (0, T_0) \ni t \longrightarrow D_t^j u(t, \cdot) \in \mathcal{E}(\Xi)$

Finally we write $Q_m(D_x)D_i^m u = f - \sum_{j=1}^{m-1} Q_j(D_x)D_i^j u$, and by using Lemma 2 and 3 we get the continuity of the mapping 3).

$$D_t^m u: (0, T_0) \ni t \longrightarrow D_t^m u(t, \cdot) \in \mathcal{E}(E)$$

This completes the proof.

Q.E.D.

Corollary. Let u(t, x) be a classical solutions of $P(D_t, D_x)u(t, x) =$ f(t, x) in Ω_{r_0} . Assume that $f \in C^{\infty}(\Omega_{r_0})$ and that, for some constant $\delta > 0, \ u \in C^{\infty} \ in \ ((0, \ \delta) \times \Xi) \cup ((0, \ T_0) \times \Xi_{\delta}).$ Then, we have $u \in C^{\infty}(\Omega_{T_0}).$

Proof. It is easy to see that f and u satisfy the conditions of Theorem 1, so that the mappings

 $D_t^j u: (0, T) \ni t \longrightarrow D_t^j u(t, \cdot) \in \mathcal{E}(\Xi)$ $(j=0, 1, \cdots, m)$ (14)Setting $u_m = D_t^m u$, we can write $Q_m(D_x)u_m = f - f$ are continuous. $\sum_{i=1}^{m-1}Q_{j}(D_{x})D_{i}^{j}u\!\equiv\!F$ and for any eta

$$D_x^{\beta}Q(D_x)(u_m(t+h)-u_m(t))/h=i\int_0^1 D_x^{\beta}D_tF(t+\theta h, x)d\theta.$$

Hence by Lemma 2 and 3 we get the existence of $D_t^{m+1}D_x^{\alpha}u=D_x^{\alpha}D_tu_m$ in Ω_{T_0} , and the continuity of the mapping

$$D_t^{m+1}u: (0, T_0) \ni t \longrightarrow D^{m+1}u(t, \cdot) \in \mathcal{E}(\Xi).$$

Writing $Q_m(D_x)D_t^{l+m}u = D_t^lf - \sum_{i=0}^{m-1}Q_i(D_x)D_t^{l+i}u$, we get $u \in C^{\infty}(\Omega_{T_0})$ by repeated applications of the above discussion for $j=1, 2, \cdots$. Q.E.D.

About the propagation of analyticity, using the method of J. Boman [1] and playing the same discussion as the proof of Theorem 1. we get the following without the proof.

Let u(t, x) be a classical solutionofTheorem 2. $P(D_t, D_x)u(t, x) = f(t, x)$ in Ω_{T_0} . Assume f and u satisfy the conditions of Theorem 1, and furthermore we assume that, for any $T (0 < T < T_0)$, there exist constants M_T and C_T such that

No. 3] Propagation of Regularity for Solutions of Differential Equations 209

$$|D_x^{lpha}f| \leq M_T C_T^{|lpha|} |lpha|^{|lpha|}$$
 in $\Omega_T = (0, T) \times E$,

 $|D_t^j u| \leq M_x C_T^{|lpha|} |lpha|^{|lpha|}$ in $(0, T) imes E_\delta$ $(j=0, 1, \cdots, m-1),$

and

 $|D_t^j u| \leq MC^{|lpha|} lpha |^{|lpha|}$ in $(0, \delta) imes E$ $(j=0, 1, \dots, m-1)$ for some constants M, C.

Then, for any $T (0 < T < T_0)$, there exist constants M'_T and C'_T such that

 $|D_t^j D_x^{\alpha} u| \leq M_T' C_T'^{|\alpha|} |\alpha|^{|\alpha|}$ in $(0, T) \times \Xi$ $(j=0, 1, \dots, m)$. Corollary. Let u(t, x) be a classical solution of $P(D_t, D_x)u(t, x) = f(t, x)$ in Ω_{T_0} . Assume that f is analytic in Ω_{T_0} and that, for some constant $\delta > 0$, u is analytic in $((0, \delta) \times \Xi) \cup ((0, T_0) \times \Xi_{\delta})$. Then, u is analytic in Ω_{T_0} .

References

- [1] J. Boman: On the propagation of analyticity of solutions of differential equations with constant coefficients. Ark. Mat., 5, 271-279 (1964).
- [2] L. Hörmander: Linear Partial Differential Operators. Springer-Verlag, Berlin (1963).
- [3] F. John: Continuous dependence on data for solutions of partial differential equations with prescribed bound. Comm. Pure Appl. Math., 13, 551-585 (1960).
- [4] H. Kumano-go and K. Shinkai: The characterization of differential operators with respect to characteristic Cauchy problem. Osaka J. Math., (1966) (to appear).
- [5] B. Malgrange: Sur la propagation de la régularité des solutions des équations à coefficients constants. Bull. Math. Soc. Math. Phys. R. P. Roumaine, 3 (53), 433-440 (1959).