48. On Propagation of Regularity in Space-variables for the Solutions of Differential Equations with Constant Coefficients

By Hitoshi Kumano-go
Department of Mathematics, Osaka University (Comm. by Kinjirô Kunugi, m.J.A., March 12, 1966)

Introduction. Let $P\left(D_{t}, D_{x}\right)$ be a differential operator with constant coefficients for which the plane: $t=0$ is characteristic. In the note [4] K. Shinkai and the author characterized this operator P through the Gevrey class $G(\alpha)(-\infty \leqq \alpha<1)$, with respect to space-variables, in which null solutions ${ }^{1)}$ of $P u=0$ are able to exist.

In this note we are concerned with the converse problem: 'Is it possible to construct a null solution such that its derivative of some order has the discontinuity with respect to space-variables at some point $\left(t_{0}, x_{0}\right)\left(t_{0}>0\right)$?' Here we give a negative answer for this problem in the sense of Theorem 1. For example, the solutions of the wave equation $\left(\partial^{2} / \partial t \partial x\right) u=0$ have the form $u(t, x)=f(t)+g(x)$. Hence, if a solution of $\left(\partial^{2} / \partial t \partial x\right) u=0$ is analytic in x for negative t, then, necessarily, it is analytic in x for positive t. But, in order to generalize this phenomena, it is necessary to discuss the propagation of regularily, which has been studied by F. John [3], B. Malgrange [5], L. Hörmander [2], and J. Boman [1], with respect to only the space-variables. We shall use L^{1}-estimates according to J. Boman. The details will be published in the Funkcialaj Ekvacioj.
§ 1. Notations and preliminary lemmas. Let $(t, x)=$ $\left(t, x_{1}, \cdots, x_{\nu}\right)$ be a point in the Euclidean (1+ע)-space $R^{1+\nu}, \xi=$ $\left(\xi_{1}, \cdots, \xi_{\nu}\right)$ be a point in the dual space E^{ν} of R^{ν}, and $\alpha=\left(\alpha_{1}, \cdots, \alpha_{\nu}\right)$ be a real vector whose elements are non-negative integers. We shall use notations:

$$
\begin{aligned}
\left(D_{t}, D_{x}\right) & =\left(D_{t}, D_{x_{1}}, \cdots, D_{x_{\nu}}\right)=\left(-i \partial / \partial t,-i \partial / \partial x_{1}, \cdots,-i \partial / \partial x_{\nu}\right) \\
|\alpha| & =\alpha_{1}+\cdots+\alpha_{\nu}, \alpha!=\alpha_{1}!\cdots \alpha_{\nu}!, x \cdot \xi=x_{1} \xi_{1}+\cdots+x_{\nu} \xi_{\nu} \\
D_{x}^{\alpha} & =D_{x_{1}}^{\alpha_{1}} \cdots D_{x_{\nu}}^{\alpha \nu}, \xi^{\alpha}=\xi_{1}^{\alpha_{1}} \cdots \xi_{\nu}^{\alpha_{\nu}} .
\end{aligned}
$$

For a function $v(x) \in C_{0}^{\infty}\left(R^{\nu}\right)$ we define the Fourier transform $\widetilde{v}(\xi)$ by

$$
\widetilde{v}(\xi)=\frac{1}{\sqrt{2 \pi^{\nu}}} \int_{R^{\nu}} \mathrm{e}^{-i x \cdot \xi} v(x) d x
$$

[^0]and for a function $u(t, x) \in C_{0}\left(R^{1+\nu}\right)$ define the partial Fourier transform $\widetilde{u}(t, \xi)$ by
$$
\widetilde{u}(t, \xi)=\frac{1}{\sqrt{2 \pi^{\nu}}} \int_{R^{\nu}} \mathrm{e}^{-i x \cdot \xi} u(t, x) d x
$$

Lemma 1. Let $P(\lambda, \xi)$ be a differential polynomial of the form

$$
\begin{gather*}
P(\lambda, \xi)=Q_{m}(\xi) \lambda^{m}+Q_{m-1}(\xi) \lambda^{m-1}+\cdots+Q_{0}(\xi) \tag{1}\\
\left(m \geqq 1, Q_{m}(\xi) \neq 0\right) .
\end{gather*}
$$

Then, for any real number a, b and positive function $\gamma(\xi)$ we have

$$
\begin{align*}
& \quad \int_{E^{\nu}} \gamma(\xi)^{a-b t_{0}}\left|Q_{m}(\xi) \widetilde{u}\left(t_{0}, \xi\right)\right| d \xi \tag{2}\\
& \leqq T_{0}^{m-1} \int_{0}^{T_{0}} \int_{E^{\nu}} \gamma(\xi)^{a-b t} P\left(D_{t}, \xi\right) \widetilde{u}(t, \xi) d \xi d t \\
& \quad\left(T_{0}>0, t_{0} \in\left(0, T_{0}\right), u \in C_{0}^{\infty} \text { in }\left(0, T_{0}\right) \times R^{\nu}\right)
\end{align*}
$$

Proof. For a function $f(t) \in C_{0}^{\infty}$ in $\left(0, T_{0}\right)$, a complex number λ and real numbers μ, η, we set $g(t)=\mathrm{e}^{\mu-i \lambda t} f(t)$, then $D_{t} g(t)=$ $\mathrm{e}^{\mu-i \lambda t}\left(D_{t}-\lambda\right) f(t)$. Then, we have

$$
\begin{aligned}
& \mathrm{e}^{\mu-\eta t_{0}+\left(\Im_{\left.\mathfrak{m}^{\lambda+\eta}\right)_{t}}\left|f\left(t_{0}\right)\right|=\left|g\left(t_{0}\right)\right|\right.} \\
& \leqq \operatorname{Min}\left\{\int_{0}^{t_{0}}\left|D_{t} g(t)\right| d t, \int_{0}^{t_{0}}\left|D_{t} g(t)\right| d t\right\} \\
& \leqq \operatorname{Min}\left\{\int_{0}^{t_{0}} \mathrm{e}^{\mu-\eta t+\left(\Im_{\left.\mathfrak{m}^{\lambda+\eta}\right) t}\left|\left(D_{t}-x\right) f(t)\right| d t, \int_{t_{0}}^{T_{0}} \mathrm{e}^{\mu-\eta t+\left(\Im_{\mathfrak{m}} \lambda+\eta\right)}\left|\left(D_{t}-\lambda\right) f(t)\right| d t\right\},}\right.
\end{aligned}
$$

where $\Im_{\mathfrak{m}} \lambda$ denotes the imaginary part of λ.
Considering two cases $\left(\Im_{\mathfrak{m}} \lambda+\eta\right) \geqq 0$ and $\left(\Im_{\mathfrak{m}} \lambda+\eta\right)<0$, we have

$$
\begin{equation*}
\mathrm{e}^{\mu-\eta t_{0}}\left|f\left(t_{0}\right)\right| \leqq \int_{0}^{T_{0}} \mathrm{e}^{\mu-\eta t}\left|\left(D_{t}-\lambda\right) f(t)\right| d t \tag{3}
\end{equation*}
$$

If we write

$$
P\left(D_{t}, \xi\right) \widetilde{u}(t, \xi)=Q_{m}(\xi) \prod_{j=1}^{m}\left(D_{t}-\lambda_{j}(\xi)\right) \widetilde{u}(t, \xi)
$$

and set $\mu=a \log \gamma(\xi)$ and $\eta=b \log \gamma(\xi)$, we get (2) by the repeated application of (3).

Lemma 2. Let $Q(\xi)$ be a differential polynomial (of order $s \geqq 0$) with the principal part $Q^{(0)}(\xi)$, and let Ξ be a bounded domain in R^{ν} with the diameter $d=d(\Xi)$. Then we have

$$
\begin{equation*}
\int_{E \nu}|\widetilde{v}(\xi)| d \xi \leqq A_{Q, d} \int_{E \nu}|Q(\xi) \widetilde{v}(\xi)| d \xi, v \in C_{0}^{\infty}(\Xi) \tag{4}
\end{equation*}
$$

where $A_{Q, d}=\left(\frac{4 d}{\pi}\right)^{s}\left(\operatorname{Max}_{|\xi|=1} Q^{(0)}(\xi)\right)^{-1}$.
Proof. After the orthogonal transformation we may assume

$$
Q(\xi)=q_{s} \xi_{1}^{s}+\sum_{j=0}^{s-1} q_{j}(\tilde{\xi}) \xi_{1}^{j}
$$

where q_{s} is a complex constant such that $\left|q_{s}\right|=\operatorname{Max}_{|\xi|=1}\left|Q^{(0)}(\xi)\right|$ and $q_{j}(\tilde{\xi})(0 \leqq j \leqq s-1)$ are polynomials in $\tilde{\xi}=\left(\xi_{2}, \cdots, \xi_{\nu}\right)$. Let $h\left(x_{1}\right)$ be a function of class C_{0}^{∞} in $(r, r+d)$ for some real r. Then, for any complex number τ, we have

$$
\int_{E_{1}}\left|\left(\xi_{1}-\tau\right) \widetilde{h}\left(\xi_{1}\right)\right| d \xi_{1} \geqq R \int_{E 1}\left|\tilde{h}\left(\xi_{1}\right)\right| d \xi_{1}-R \int_{\left|\xi_{1}-\tau\right| \leqq R}\left|\widetilde{h}\left(\xi_{1}\right)\right| d \xi_{1}
$$

where

$$
\tilde{h}\left(\xi_{1}\right)=\frac{1}{\sqrt{2 \pi}} \int_{R^{1}} \mathrm{e}^{-i x_{1} \xi_{1}} h\left(x_{1}\right) d x_{1}
$$

On the other hand

$$
\left|\widetilde{h}\left(\xi_{1}\right)\right| \leqq \frac{1}{\sqrt{2 \pi}} \int_{\gamma}^{\gamma+d}\left|h\left(x_{1}\right)\right| d x_{1} \leqq \frac{d}{2 \pi} \int_{E_{1}}\left|\widetilde{h}\left(\xi_{1}\right)\right| d \xi_{1} .
$$

Hence, setting $R=\pi /(2 d)$, we have

$$
\int_{E 1}\left|\left(\xi_{1}-\tau\right) \widetilde{h}\left(\xi_{1}\right)\right| d \xi_{1} \geqq \frac{\pi}{4 d} \int_{\pi 1}\left|\widetilde{h}\left(\xi_{1}\right)\right| d \xi_{1},
$$

so that we have

$$
\begin{aligned}
& \int_{E \nu}|Q(\xi) \widetilde{v}(\xi)| d \xi=\int_{B_{\nu}-1}\left\{\int_{E 1}\left|q_{s} \prod_{j=1}^{s}\left(\xi_{1}-\tau_{j}(\tilde{\xi})\right) \widetilde{v}\left(\xi_{1}, \tilde{\xi}\right)\right| d \xi_{1}\right\} d \tilde{\xi} \\
& \quad \geqq\left|q_{s}\right|\left(\frac{\pi}{4 d}\right)^{s} \int_{B \nu}|\widetilde{v}(\tilde{\xi})| d \xi . \quad \text { Q.E.D. }
\end{aligned}
$$

Lemma 3. Let Ξ be a bounded domain in R^{ν}. Then, for $k=$ $-(\nu+1), \cdots, 0,1, \cdots$, we have
(5) $\quad \int_{E \nu}(1+|\xi|)^{k}|\widetilde{v}(\xi)| d \xi \leqq A_{\nu, s} 2^{k} \operatorname{Max}_{|\beta| \leq k+\nu+1}\left|D_{x}^{\beta} v\right|, v \in C_{0}^{\infty}(\Xi)$, where $A_{\nu, \xi}=2(2 / \pi)^{\nu / 2} \operatorname{meas}(\Xi) \int_{E \nu}(1+|\xi|)^{-(\nu+1)} d \xi$ and meas (Ξ) denotes the measure of Ξ.

Proof. We have

$$
\begin{aligned}
& \int_{E \nu}(1+|\xi|)^{k}|\widetilde{v}(\xi)| d \xi \leqq\left(\int_{E \nu}(1+|\xi|)^{-(\nu+1)} d \xi\right) \sup _{\xi \in \Sigma^{\nu}}(1+|\xi|)^{k+\nu+1}|\widetilde{v}(\xi)|, \\
& (1+|\xi|)^{k+\nu+1}|\widetilde{v}(\xi)| \leqq 2^{k+\nu+1} \operatorname{Max}_{|| | \leqslant k+\nu+1}^{\operatorname{Max}}\left|\xi^{\beta} \hat{v}(\xi)\right|
\end{aligned}
$$

and

$$
\left|\xi^{\beta} \widetilde{v}(\xi)\right| \leqq \frac{1}{\sqrt{2 \pi^{v}}} \int_{x^{\nu}}\left|D_{x}^{\beta} v(x)\right| d x .
$$

Hence, we get easily (5).
Q.E.D.
§ 2. Propagation of regularity. Let Ξ be a bounded domain in R^{ν} and set $\Omega_{r_{0}}=\left(0, T_{0}\right) \times \Xi\left(T_{0}>0\right)$.

Theorem 1. Let $u(t, x)$ be a classical solution of $P\left(D_{t}, D_{x}\right) u(t, x)=$ $f(t, x)$ for $f \in C\left(\Omega_{T_{0}}\right)$.

Assume that f is infinitely differentiable in x for any fixed $t \in\left(0, T_{0}\right)$ and the mapping
(6) $f:\left(0, T_{0}\right) \ni t \rightarrow f(t, \cdot) \in \mathcal{E}(\Xi)$
is continuous, ${ }^{2}$) furthermore assume that, for some constant $\delta>0$, $D_{i}^{i} u(j=0, \cdots, m-1)$ are infinitely differentiable function of x in
2) We call the mapping $f:\left(0, T_{0}\right) \ni t \rightarrow f(t, \cdot) \in \mathcal{E}(\Xi)$ is continuous, if, for any fixed compact set K of Ξ, α and $t_{0} \in\left(0, T_{0}\right), D_{x}^{\alpha} f(t, x) \rightarrow D_{x}^{\alpha} f\left(t_{0}, x\right)$ as $t \rightarrow t_{0}$ uniformly on K.
$((0, \delta) \times \Xi) \cup\left(\left(0, T_{0}\right) \times \Xi_{\delta}\right)^{3)}$ and the mappings

$$
D_{t}^{j} u:\left\{\begin{array}{l}
(0, \delta) \ni t \rightarrow D_{i}^{j} u(t, \cdot) \in \mathcal{E}(\Xi) \tag{7}\\
\left(0, T_{0}\right) \ni t \rightarrow D_{t}^{j} u(t, \cdot) \in \mathcal{E}\left(\Xi_{\delta}\right)
\end{array} \quad(j=0,1, \cdots, m-1) .\right.
$$

are continuous.
Then, $D_{t}^{j} u(t, x)(j=0,1, \cdots, m)$ are infinitely differentiable functions of x in $\Omega_{T_{0}}$ and the mappings

$$
\begin{equation*}
D_{t}^{j} u:\left(0, T_{0}\right) \ni t \rightarrow D_{t}^{j} u(t, \cdot) \in \mathcal{E}(\Xi) \tag{8}
\end{equation*}
$$

$$
(j=0,1, \cdots, m)
$$

are continuous.
Proof. We fix $T, T^{\prime}, T^{\prime \prime}$, and δ^{\prime} such that $0<T<T^{\prime}<T^{\prime \prime}<T_{0}$ and $0<\delta^{\prime}<\delta$. Take a function $\Psi(t, x) \in C_{0}^{\infty}\left(\Omega_{T_{0}}\right)$ such that $\Psi \equiv 1$ in ($\left.\delta^{\prime}, T^{\prime \prime}\right) \times\left(\Xi-\Xi_{\delta^{\prime}}\right)$ where $\Xi-\Xi_{\delta^{\prime}}=\left\{x ; x \in \Xi, x \notin \Xi_{\delta^{\prime}}\right\}$.

Set $U=\Psi u$, then
(9)

$$
P\left(D_{t}, D_{x}\right) U=\Psi f+f^{\prime} \equiv F,
$$

where

$$
f^{\prime}=\sum_{j+|\alpha| \neq 0} \frac{1}{j!\alpha!} D_{t}^{j} D_{x}^{\alpha} \Psi \cdot P^{(j, \alpha)}\left(D_{t}, D_{x}\right) u\left(P^{(j, \alpha)}(\lambda, \xi)=\frac{\partial^{j+|\alpha|}}{\partial \lambda^{j} \partial \xi^{\alpha}} P(\lambda, \xi)\right) .
$$

Since $f^{\prime} \equiv 0$ in ($\left.\delta^{\prime}, T^{\prime \prime}\right) \times\left(\Xi-\Xi_{\delta^{\prime}}\right)$, we see, by the assumption of Theorem 1, that $F \in C_{0}\left(\Omega_{r_{0}}\right)$ and a infinitely differentiable function of x in $\Omega_{T^{\prime \prime}}=\left(0, T^{\prime \prime}\right) \times \Xi$, and that, for any α and $t_{0} \in\left(0, T^{\prime \prime}\right)$,

$$
\begin{equation*}
D_{x}^{\alpha} F(t, x) \rightarrow D_{x}^{\alpha} F\left(t_{0}, x\right) \quad \text { as } t \rightarrow t_{0} \tag{10}
\end{equation*}
$$

uniformly in Ξ. Set $a=(n+\nu+1) T^{\prime} /\left(T^{\prime}-T\right), b=(n+\nu+1) /\left(T^{\prime}-T\right)$. Then we have
(11) $\quad a-b t \leqq a$ in $\left(0, T_{0}\right), \geqq n$ in $(0, T)$, $\leqq-(\nu+1)$ in ($\left.T^{\prime}, T_{0}\right)$.

Approximating U by $U_{n} \in C_{0}^{\infty}\left(\Omega_{T_{0}}\right)$ and applying (2) to U_{n} by setting $\gamma(\xi)=(1+|\xi|)$, we get by (11)

$$
\begin{align*}
& \int_{E^{\nu}}(1+|\xi|)^{n}\left|Q_{m}(\xi) \widetilde{U}\left(t_{0}, \xi\right)\right| d \xi \\
& \leqq T_{0}^{m-1}\left\{\int_{0}^{T^{\prime}} \int_{E^{\nu}}(1+|\xi|)^{a}|\widetilde{F}(t, \xi)| d \xi d t\right. \tag{12}\\
& \left.\quad+\int_{T^{\prime}}^{T_{0}} \int_{E^{\nu}}(1+|\xi|)^{-(\nu+1)}|\widetilde{F}(t, \xi)| d \xi d t\right\}
\end{align*}
$$

for every $t_{0} \in(0, T)$.
By Lemma 2 and 3 we have for $|\alpha|=n$

$$
\begin{align*}
& \left|D_{x}^{\alpha} U\left(t_{0}, x\right)\right| \leqq \frac{1}{\sqrt{2 \pi^{2}}} \int_{E^{\nu}}\left|\widetilde{D_{x}^{\alpha}} U(t, \xi)\right| d \xi \\
& \leqq T_{0}^{m-1} A_{Q_{m^{\prime}, \nu, \Sigma}}\left\{2^{a} \int_{0}^{T^{\prime}} \operatorname{Max}_{\substack{|\beta| \leq a+\nu+1 \\
x \in \mathcal{B}}}\left|D_{x}^{\beta} F(t, x)\right| d t+2^{-(\nu+1)} \int_{T^{\prime},}^{T_{0}} \operatorname{Max}_{x \in \Sigma}|F(t, x)| d t\right\} \tag{13}
\end{align*}
$$

for $t_{0} \in(0, T)$. Since we can take n arvitrarily large, we get, in ($\left.\delta^{\prime}, T\right) \times\left(\Xi-\Xi_{\delta^{\prime}}\right), u\left(t_{0}, x\right)=U\left(t_{0}, x\right)$ is a infinitely differentiable function of x. Letting $T \rightarrow T_{0}$, we get by (7) that $u(t, x)$ is a infinitely

[^1]differentiable function of x in
$$
\Omega_{T_{0}}=((0, \delta) \times \Xi) \cup\left(\left(0, T_{0}\right) \times \Xi_{\delta}\right) \cup\left(\left(0, T_{0}\right) \times\left(\Xi-\Xi_{\delta^{\prime}}\right)\right)
$$

In order to prove the continuity of the mappings (8), we use (13) by replacing $U(t)$ by $(U(t+h)-U(t))$. Then $P(U(t+h)-U(t))=$ $(F(t+h)-F(t))$. By (10) we see that (13) has meaning for $h<T^{\prime \prime}-$ T^{\prime}, so that we have

$$
D_{x}^{\alpha} u\left(t_{0}+h\right) \rightarrow D_{x}^{\alpha} u\left(t_{0}\right) \quad \text { as } \quad h \rightarrow 0
$$

uniformly in ($\left.\delta^{\prime}, T\right) \times\left(\Xi-\Xi_{\delta^{\prime}}\right.$) for any fixed α. Hence, letting $T \rightarrow$ T_{0} we get the continuity of the mapping $u:\left(0, T_{0}\right) \ni t \rightarrow u(t, \cdot) \in \mathcal{E}(\Xi)$. Next, setting $u_{1}=D_{t} u$, we have $P_{1}\left(D_{t}, D_{x}\right) u_{1} \equiv \sum_{j=1}^{m} Q_{j}\left(D_{x}\right) D_{t}^{j-1} u_{1}=$ $\left(f-Q_{0}\left(D_{x}\right) u\right) \equiv f_{1}$. Then u_{1} and f_{1} satisfy the conditions of Theorem 1 , so that the mapping

$$
D_{t} u=u_{1}:\left(0, T_{0}\right) \ni t \rightarrow u_{1}(t, \cdot) \in \mathcal{E}(\Xi)
$$

is continuous, and so on we get the continuity of the mappings

$$
D_{t}^{j} u:\left(0, T_{0}\right) \ni t \rightarrow D_{t}^{j} u(t, \cdot) \in \mathcal{E}(\Xi) \quad(j=2, \cdots, m-1)
$$

Finally we write $Q_{m}\left(D_{x}\right) D_{t}^{m} u=f-\sum_{j=0}^{m-1} Q_{j}\left(D_{x}\right) D_{t}^{j} u$, and by using Lemma 2 and 3 we get the continuity of the mapping

$$
D_{t}^{m} u:\left(0, T_{0}\right) \ni t \rightarrow D_{t}^{m} u(t, \cdot) \in \mathcal{E}(\Xi)
$$

This completes the proof.
Q.E.D.

Corollary. Let $u(t, x)$ be a classical solutions of $P\left(D_{t}, D_{x}\right) u(t, x)=$ $f(t, x)$ in $\Omega_{r_{0}}$. Assume that $f \in C^{\infty}\left(\Omega_{r_{0}}\right)$ and that, for some constant $\delta>0, u \in C^{\infty}$ in $((0, \delta) \times \Xi) \cup\left(\left(0, T_{0}\right) \times \Xi_{\delta}\right)$. Then, we have $u \in C^{\infty}\left(\Omega_{T_{0}}\right)$.

Proof. It is easy to see that f and u satisfy the conditions of Theorem 1, so that the mappings

$$
\begin{equation*}
D_{t}^{j} u:(0, T) \ni t \rightarrow D_{t}^{j} u(t, \cdot) \in \mathcal{E}(\Xi) \quad(j=0,1, \cdots, m) \tag{14}
\end{equation*}
$$

are continuous. Setting $u_{m}=D_{t}^{m} u$, we can write $Q_{m}\left(D_{x}\right) u_{m}=f-$ $\sum_{j=0}^{m-1} Q_{j}\left(D_{x}\right) D_{t}^{j} u \equiv F$ and for any β

$$
D_{x}^{\beta} Q\left(D_{x}\right)\left(u_{m}(t+h)-u_{m}(t)\right) / h=i \int_{0}^{1} D_{x}^{\beta} D_{t} F(t+\theta h, x) d \theta
$$

Hence by Lemma 2 and 3 we get the existence of $D_{t}^{m+1} D_{x}^{\alpha} u=D_{x}^{\alpha} D_{t} u_{m}$ in $\Omega_{T_{0}}$, and the continuity of the mapping

$$
D_{t}^{m+1} u:\left(0, T_{0}\right) \ni t \rightarrow D^{m+1} u(t, \cdot) \in \mathcal{E}(\Xi)
$$

Writing $Q_{m}\left(D_{x}\right) D_{t}^{l+m} u=D_{t}^{l} f-\sum_{j=0}^{m-1} Q_{j}\left(D_{x}\right) D_{t}^{l+j} u$, we get $u \in C^{\infty}\left(\Omega_{T_{0}}\right)$ by repeated applications of the above discussion for $j=1,2, \cdots$ Q.E.D.

About the propagation of analyticity, using the method of J . Boman [1] and playing the same discussion as the proof of Theorem 1 , we get the following without the proof.

Theorem 2. Let $u(t, x)$ be a classical solution of $P\left(D_{t}, D_{x}\right) u(t, x)=f(t, x)$ in $\Omega_{T_{0}}$. Assume f and u satisfy the conditions of Theorem 1, and furthermore we assume that, for any $T\left(0<T<T_{0}\right)$, there exist constants M_{T} and C_{T} such that

$$
\begin{aligned}
& \left|D_{x}^{\alpha} f\right| \leqq M_{r} C_{T}^{|\alpha|}|\alpha|^{|\alpha|} \quad \text { in } \Omega_{r}=(0, T) \times \Xi, \quad \\
& \left|D_{t}^{j} u\right| \leqq M_{T} C_{T}^{|\alpha|}|\alpha|^{|\alpha|} \quad \text { in }(0, T) \times \Xi_{\delta} \quad(j=0,1, \cdots, m-1),
\end{aligned}
$$ and

$$
\left|D_{t}^{j} u\right| \leqq M C^{|\alpha|}|\alpha|^{|\alpha|} \quad \text { in }(0, \delta) \times \Xi \quad(j=0,1, \cdots, m-1)
$$ for some constants M, C.

Then, for any $T\left(0<T<T_{0}\right)$, there exist constants M_{T}^{\prime} and C_{T}^{\prime} such that

$$
\left|D_{t}^{j} D_{x}^{\alpha} u\right| \leqq M_{T}^{\prime} C_{T}^{\prime|\alpha|}|\alpha|^{|\alpha|} \text { in }(0, T) \times \Xi \quad(j=0,1, \cdots, m) .
$$

Corollary. Let $u(t, x)$ be a classical solution of $P\left(D_{t}, D_{x}\right) u(t, x)=$ $f(t, x)$ in $\Omega_{T_{0}}$. Assume that f is analytic in $\Omega_{T_{0}}$ and that, for some constant $\delta>0$, u is analytic in $((0, \delta) \times \Xi) \cup\left(\left(0, T_{0}\right) \times \Xi_{\delta}\right)$. Then, u is analytic in $\Omega_{T_{0}}$.

References

[1] J. Boman: On the propagation of analyticity of solutions of differential equations with constant coefficients. Ark. Mat., 5, 271-279 (1964).
[2] L. Hörmander: Linear Partial Differential Operators. Springer-Verlag, Berlin (1963).
[3] F. John: Continuous dependence on data for solutions of partial differential equations with prescribed bound. Comm. Pure Appl. Math., 13, 551-585 (1960).
[4] H. Kumano-go and K. Shinkai: The characterization of differential operators with respect to characteristic Cauchy problem. Osaka J. Math., (1966) (to appear).
[5] B. Malgrange: Sur la propagation de la régularité des solutions des équations à coefficients constants. Bull. Math. Soc. Math. Phys. R. P. Roumaine, 3 (53), 433-440 (1959).

[^0]: 1) A C^{∞}-solution u of $P u=0$ is called a null solution, if $u \equiv 0$ for $\mathrm{t} \leqq 0$ and $u \not \equiv 0$ for $t>0$.
[^1]: 3) $\Xi_{\delta}=\{x \in E ; \operatorname{dis}(x, \partial E)<\delta\}$ where $\operatorname{dis}(x, \partial E)$ means the distance from x to the boundary ∂E of E.
