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Department of Mathematics, Osaka University

(Comm. by Kinjird6 KUNUGI, M.J.A., March 12, 1966)

Introduction. Let P(D,, D,) be a differential operator with
constant coefficients for which the plane: ¢ = 0 is characteristic. In
the note [4] K. Shinkai and the author characterized this operator
P through the Gevrey class G(a) (—o =a<1), with respect to
space-variables, in which null solutions® of Pu=0 are able to exist.

In this note we are concerned with the converse problem: ‘Is
it possible to construet a null solution such that its derivative of
some order has the discontinuity with respect to space-variables at
some point (t,, #,) (£, > 0)?” Here we give a negative answer for
this problem in the sense of Theorem 1. For example, the solutions
of the wave equation (6*/0t 0x)u=0 have the form u(¢, )=f(t)+ g(x).
Hence, if a solution of (0%*/0t 0x)u=0 is analytic in x for negative
t, then, necessarily, it is analytic in « for positive ¢. But, in order
to generalize this phenomena, it is necessary to discuss the propaga-
tion of regularily, which has been studied by F. John [3],
B. Malgrange [5], L. Hormander [2], and J. Boman [1], with
respect to only the space-variables. We shall use L'-estimates
according to J. Boman. The details will be published in the
Funkcialaj Ekvacioj.

§1. Notations and preliminary lemmas. Let (¢, 2)=
(t, @y, +++,2,) be a point in the Euclidean (1-+v)-space R, &=
(&4, *+++, &) be a point in the dual space E* of R, and a=(a,, +-+, a,)
be a real vector whose elements are non-negative integers. We
shall use notations:

(Dts Dz):(Du D:cls ) -Dac,,):(_’ba/at, ——Iia/axl, ) —za/ax,,),

la|=a+--+a,al=a! -++ !, ® - E=a,& 4+ +08,,
Di=Dgr--- Dg¥, %=1+ &,
For a function v(x)e C;(R*) we define the Fourier transform
(&) by
1
V' 2n”
1) A C™-solution u of Pu=0 is called a null solution, if =0 for t<0 and
u%0 for t>0.

(&)=

S e Sy(x)dx
RY
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and for a function u(t, x) € C(R'™) define the partial Fourier trans-
form %(t, &) by

It — 1 —ix-¢
ut, &)= Yo Sme u(t, x)dx.
Lemma 1. Let P(2, %) be a differential polynomial of the form
(1) P2, §)=Qu(E)A" + Qo)A 4+ - - +Qy(§)

(m=1, Q,(8)#0).
Then, for any real number a, b and positive function v(§) we have

(2) Lﬂ@““"" | Qu(&)a(ts, &) | dE

T,
=107 w@P, o, & azar
(T,>0, t, e (0, T,), we Cy in (0, T,)x R).
Proof. For a function f(¢)e Cy° in (0, T,), a complex number
2 and real numbers g, 7, we set g(t)=e*~*f(t), then D,g(t)=
e~ ™(D,—2) f(t). Then, we have
ermrtor@mendal f(¢) |=| g(t,) |

<Min {g:‘ﬁ D.g(¢) |dt, S; Dg(t) ldt}

to & Ty
éMin{S ermSuren|(D, — ) f(8)de, S eﬂ-m(%m“-"”l(Dt—z>f<t>|dt},
0 to
where Jy4 denotes the imaginary part of 2.
Considering two cases (Ju4+7)=0 and (Jui+7)<0, we have
(3) el (8| 5| "o (D=2 0
0
If we write

P(D,, )i(t, )= Qu(]] (D=2 Alt, )
and set p=alog (&) and n=>log¥(§), we get (2) by the repeated
application of (3).
Lemma 2. Let Q&) be a differential polynomial (of order

s=0) with the principal part QV(E), and let E be a bounded domain
wn RY with the diameter d=d(E). Then we have

o S PO dE 40| QO 12, ve Cr(E)
where A‘Qrd: (i:)a(lg:alx Q(o)(é))-l,

Proof. After the orthogonal transformation we may assume
8—1 ~ .
Q=g+ @8
where ¢, is a complex constant such that |g, [:1}&3{ | (&) | and
q;(8) (0= j=<s—1) are polynomials in £=(&, ++-, &,). Let h(x,) be a

function of class C;° in (», r+d) for some real ». Then, for any
complex number 7, we have
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[, @—oke) aezr] ke a—r| ke
where

RE)=—~2\ e man(a)da,.

FE b
On the other hand

) 1= b 1w L || e 1as.
Hence, setting R=n/(2d), we have
| E—oReaaz 1l ke as,
so that we have
Je@u@as={ {] o I G—n@) o, 81dsz
>|q. 1( ; d) LJ (e) |dé. Q.E.D.

Lemma 3. Let & be a bounded domain in R*. Then, for k=
—w+1),:+-,0,1, -+, we have
(5) |, (1+]&1¥ 09 [dE=A,..2" Max | Do, ve C(&),

Blsk+v+1
where A, =22/m)"* meas(S)S A+ &E)~¥MdE and meas(Z) denotes
Ey
the measure of B
Proof. We have

[ 1600 fas = ([ (18 Do dg) sup (141 & Doeea 99 |,

(L] & PF 9(8) | =2 Max | &P9(8) |
and 1BISk+v+1

By _1« B
|96 |=—2s || Do) |da.

Hence, we get easily (5). Q.E.D.
§ 2. Propagation of regularity. Let Z be a bounded domain
in R” and set 2, =(0, T))x & (T,>0).
Theorem 1. Let u(t, x) be a classical solution of P(D,, D,)u(t, x)=
£(t, ) for feC(@y).
Assume that f is infinitely differentiable in x for any ficved
te (0, T,) and the mapping
(6) f:(0, Ty) ot—f(2, -) € E(&)
18 continuous,” furthermore assume that, for some constant 6 >0,
Diu(3=0, -+, m — 1) are infinitely diﬁ‘erentiable function of x in
2) We call the mapping f: (0, To) 3t—f(, -) €£(E) is continuous, if, for any

fixed compact set K of Z, a and £, € (0, To), DZSf(t, €)—>D2 f(to, ) as t—to uniformly
on K.
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(0, ) x EYU((0, T)x E)® and the mappings

in. (0, 0)3t—Diu(t, -) e &(&)
0 DI 1y 3 t—Diuc, ) o

(j:()’ 1, .-, m—1)

are continuous.
Then, Dju(t,x) (§=0,1, ---, m) are infinitely differentiable func-
tions of x n 2, and the mappings
(8) Diw: (0, T) 2 t—Dju(t, -) € &(&) (7=0,1, ++-, m)
are continuous.

Proof. We fix T, T', T”, and &’ such that 0< T<T'<T"< T,
and 0<d’'<d. Take a function (¢, x)eCo‘”(QTO) such that =1 in
0, T"Yx (5 —E;) where E—Hy={x;x€ &, x ¢ 5}

Set U=¥u, then
(9) P(D,, D,)U=¥f+f"=
where

[ —

1 e . Pl ) it
i+l Jla! (D7 - PY (Dt,D,)u(P’ 4, )= Z’BS"‘P( E))

Since f'=0 in (¢, T")x(E—5,), we see, by the assumption of
Theorem 1, that F'e C(2;) and a infinitely differentiable function
of x in 2,.=(0, T")x Z, and that, for any « and ¢, (0, T"),

(10) D2F(t, x)—D2F (¢, x) as t—t,

uniformly in 5, Set a=n+y+1)T'(T'—T), b=(n+v+1)[(T'—T).
Then we have

(11) a—bt<a in (0, T\), =n in (0, T), <—(+1) in (T', T).
Approximating U by U, e C*(2,,) and applying (2) to U, by setting
Y(E)=1+|£]), we get by (11)

Sm(”l £ Qu(&) Utt,, &) 148
e = T"m_l{gow SW(H | &1)e| F(¢, &) |dédt

T ~
+ [0, ke ol e, ¢ agas)
for every t,e€(0, T).
By Lemma 2 and 3 we have for |a|=n

| D2Ut, @) |S—| | DU, &) a8
(13)
<Tp-id, ys{zar Max | DEF(t, o) |dt+2~<v+1>§ "Max | Fit, o) ldt}
0 lﬁlsg+v+1

for ¢t,€ (0, T'). Since we can take » arvitrarily large, we get, in
(0", TYx(E—EFs), ult, €)= U(t,, ) is a infinitely differentiable funec-
tion of . Letting T—T, we get by (7) that u(¢, ) is a infinitely

3) Es={xecF; dis(x, 05) <5} where dis(x, 35) means the distance from # to the
boundary 95 of E.
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differentiable function of x in
27,=((0, ) x Z)U((0, To) x B5) U (0, To) X (B —5s)).

In order to prove the continuity of the mappings (8), we use
(13) by replacing U(t) by (U(t+h)— U(t)). Then P(U(t+h)— U(t))=
(F(t+h)—F(t)). By (10) we see that (138) has meaning for h<T"—
T', so that we have

D2u(t,+h)—D2u(t,) as h—0
uniformly in (&', T)x (8 —5&js) for any fixed «. Hence, letting T—
T, we get the continuity of the mapping w: (0, T,) 9t~—>u(t e &BE).
Next, setting wu,=D,u, we have P (Dt,D)ul_EQ (D)D{ u,=
(f—Q«D,)u)=f,. Then u, and f, satisfy the condltlons of Theorem
1, so that the mapping

Dau=u,: (0, T,) o t—uy(t, -)e EE)
is continuous, and so on we get the continuity of the mappings

Dju: (0, T,) 2 t—Dju(t, )eé’(:) (7=2, +++,m—1).

Finally we write Q,.(D,)Dru=f— ZQ (D,)Dju, and by using Lemma
2 and 3 we get the continuity of the mapping

Dru: (0, T,) > t—Dru(t, +) e E(E).
This completes the proof. Q.E.D.

Corollary. Let u(t, x) be a classical solutions of P(D,, D, )u(t, x)=
Sflt, @) in Qp. Assume that fe C=(2p) and that, for some constant
60>0, we C= in ((0, 0) x Z)U (0, T))x B;s). Then, we have u € C=(2y,).

Proof. It is easy to see that f and w satisfy the conditions of
Theorem 1, so that the mappings
(14) Diw: (0’ T)at-——*Df’ll/(t, ')68(5) (j:‘O’ 1, "‘,’”7/)
are continuous. Setting w,=Dru, we can write Q,(D)u,=f—
:_”z:Q,.(Dx)DguEF and for any B

DEQ(D,) (W (t+ k) —u,(t)) h=1 S 1DQD,F'(t +6h, x)dd.
0
Hence by Lemma 2 and 3 we get the existence of D*"'Dju=D;D,u,,

in 2, and the continuity of the mapping

D+ (0, To)at—+D"‘+1u(t e &E(H).
Writing Q,.(D,)D}*™u=D.f— ZQ (D,)Di*u, we get we C”(.QTO) by
repeated applications of the above discussion for j=1, 2, . Q.E.D.

About the propagation of analyticity, using the method of J.
Boman [1] and playing the same discussion as the proof of Theorem
1, we get the following without the proof.

Theorem 2. Let wu(t,x) be a classical solution of
P(D,, D,)yu(t, x)=f(t, x) in Qn. Assume f and u satisfy the condi-
tions of Theorem 1, and furthermore we assume that, for any
T (0< T<T,), there exist constants M, and Cy such that
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| Def |=M,Cr'| e | in 2,=(0, T)X Z,

| Div | =M, C#'|a|* in (0, T)X Es (4=0,1, -+, m—1),
and
| Diu|<MC“|a | in (0,0)x 5 (7=0,1, -+, m—1)

for some constants M, C.

Then, for any T (0<T<T,), there ewist constants M; and C;
such that

| DiD¢w | < M;CP*| e | in (0, T)X & (7=0,1, -+, m).

Corollary. Let u(t, ) be a classical solution of P(D,, D u(t, x)=
f(t, ) in Qp. Assume that fis analytic in 2., and that, for some
constant 0>0, u is analytic in ((0,0)x E)U((0, Ty) X &s). Then, u
18 analytic in Qq,.
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