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Introduction. Let P(Dt, D,,) be a differential operator with
constant coefficients for which the plane: t- 0 is characteristic. In
the note [4 K. Shinkai and the author characterized this operator
P through the Gevrey class G(a) (- =<a 1), with respect to
space-variables, in which null solutions) of Pu--O are able to exist.

In this note we are concerned with the converse problem: ’Is
it possible to construct a null solution such that its derivative of
some order has the discontinuity with respect to space-variables at
some point (to, x0)(to > 0)?’ Here we give a negative answer for
this problem in the sense of Theorem 1. For example, the solutions
of the wave equation (/tx)u--O have the form u(t, x)=f(t)/g(x).
Hence, if a solution of (/t x)u-O is analytic in x for negative
t, then, necessarily, it is analytic in x for positive t. But, in order
to generalize this phenomena, it is necessary to discuss the propaga-
tion of regularily, which has been studied by F. John 3,
B. Malgrange 5, L. HSrmander 2, and J. Boman 1, with
respect to only the space-variables. We shall use L-estimates
according to J. Boman. The details will be published in the
Funkcialaj Ekvacioj.

1. Notations and preliminary lemmas. Let (t, x)--
(t,x, ...,x,) be a point in the Euclidean (l/)-space R+, =
(, ..-, )be a point in the dual space E of R, and a=(a, ..., a)
be a real vector whose elements are non-negative integers. We
shall use notations"

(D, D)--(Dt, D, ..., D)--(--i/t, --i/x, ..., --i/x),
a I-a+... +a, a!=a! a!, x -x+... +x,

For a function v(x)eCC(R) we define the Fourier transform
() by

()_ 1 I e-’v(x)dx

1) A C*-solution u of Pu=O is called a null solution, if u=0 for t=<0 and
u0 for >0.
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and for a function u(t, x)e Co(R+) define the partial Fourier trans-
form (t, ) by

1 Ie-’u(t’ x)dxu(t, )-V_
Lemma 1. Let P(, ) be a differential polynomial of the form

1 P(2, )-Q()+Q_l()2-l/ +Q0()
(m 1, Q() 0).

Then, for any real number a, b and positive function () we have

()-bo Q()U(to, )d
(2)

T:-*" 7()-tP(Dt, )(t, )ddt
oE

(To>0, toe (0, To), ue C: in (0, To)R).
Proof. For a function f(t)e C7 in (0, To), a complex number

and real numbers V, , we set g(t)-e’-xtf(t), then D,g(t)--
e-X*(D,--)f(t). Then, we have

e-’t+(3x+’)t] f(to) ]--{ g(to)

Min {o Dtg(t)[dt, o1 Dtg(t)

where m2 denotes the imaginary art
Considering two eases (m+) 0 and (m2+)< O, we have

)

If we write

P(D, )(t, )-() (D-())(t,
=1

and set -e log 7() and - b log 7(), we get () by the reeated
aplieation of ().

Lemma 2. Let () be deetil olom4 (of o
0) th the pre@a part o(),
in R with the diameter d-d(). Then we have

(4) . ()[dA,l Q()()d, v C?()

(4d)’(MaxQ()())-where A,=

Poo. After the orthogonal transformation we may assume

Q()-

where q, is a Complex constant suCh that q, I=MaxIQ()()i and
I1=

q()(Os-) are polynomials in =(, ..., ). Let h(x) be a
function of class C in (r, r+d) for some real r. Then, for any
complex number , we have
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where
1 I e-xh(x)dx"h(%)-V--

On the other hand

h() =Vj h(x) dx

Hence, setting R=/(2d), we have

so that we have

Lemma 3. Let be a bounded domain in R. Then, for k=
-(u+l), ..., 0, 1, ..., we have

( 5 ) ( 1+] I)] ()]d$A,s2 Max ]D2v ], v e C(S),

where A,,s-2(2/w)m meas(E)(1. +] ])-(+)d and meas(E) denotes
the measure of .

Proof. We have

()
E E 6E

(+ )++ ()2++ Max ()
and

++

Henee, we get easily (g). .E.D.
2. Propagation of regularity. Let be a bounded domain

in R and set 9,= (0, T0) x (T0 > 0).
Theorem 1. Let (, ) be eliel oetio ofP(D, D)e(t, )=

Assume that f is infinitely differentiable in x for any fixed
t e (0, To) and the mapping
( 6 f: (0, To) tf(t, e (E)
is continuous,) furthermore assume that, for some constant >0,
Du(]=O,..., m- 1) are infinitely differentiable function of x in

2) We call the mapping f: (0, To) tf(t, -) 6 d’() is continuous, if, for any
fixed compact set K of E, a and t06(0, To), Df(t,x)-Df(to, x) as tto uniformly
on K.
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((0, ) ) U ((0, To) )) and the mappings

7 n/u’(0’ ) t---n/u(t, e C(E)
"t(0, To) tD[u(t, ) e (=)

(j-o, ...,
are continuous.
Then, D[u(t, x) (j=0, 1, ..., m) are infinitely differentiable func-
tions of x in [2 and the mappings
8 D[u" (0, To) t-.D[u(t, .) e ’() (j--0, 1, ..., m)

are continuous.
Proof. We fix T, T’, T", and $’ such that 0T T’ T" To

and 0’/. Take a function (t, x) e Co(9o) such that 1 in
(’, T") (-,) where -,-- {x; x e , x e ,}.

Set U=u, then
(9) P(Dt, D)U:-Crf/f’--F,
where

-DDqr. P(, (D D)u P(,")( )- P( )f’ Z j! a! 2---
Since f’=0 in ($’, T")x(E--E,), we see, by the assumption of
Theorem 1, that F s Co(/2o) and a infinitely differentiable function
of z in 2,,-(0, T")xE, and tha, for any and to S (0, T"),
(10) DF(t, x) DF(to, x) as t-.to
uniformly in E. Set a= (n+ v+ 1) T’/(T’- T), b= (n+ v+ 1)/(T’-- T).
Then we have

__>n in (0, T), <-(v+l) in (T’ To).(11) a-bt<a in (0, To),
Approximating U by U. e Co(tgo) and applying (2)to U by setting
7()-(1+1 I), we get by (11)

(12)

for every to e (0, T).
By Lemma 2 and 3 we have for ]a ]-n

DU(to, x) < 1 I D’FU(t’ )
(13) - {2i’ Idt+ IMax F(t, x) ]dt}_-< T A,, Max DF(t, x) 2-(+)

Il<aWV+l JT’

for to (0, T). Since we can take n arvitrarily large, we get, in
(’, T) (E-Ea,), U(to, x)= U(to, x) is a infinitely differentiable func-
tion of x. Letting T-.To, we get by (7) that u(t, x) is a infinitely

3) s= {x e s; dis(x, 3) < } where dis(x, 3) means the distance from x to the
boundary 38 of ,
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differentiable function of x in
f20--((0, ) ) U ((0, To) s) k) ((0, To) (-,)).

In order to prove the continuity of the mappings (8), we use
(13) by replacing U(t) by (U(t + h)- U(t)). Then P( U(t + h)- U(t))--
(F(t+h)-F(t)). By (10) we see that (13)has meaning for h< T"--
T’, so that we have

D2u(to+h)---Du(to) as h-o0
uniformly in (’, T) (E--Es,) for any fixed . Hence, letting

To we get the continuity of the mapping u: (0, To) t--u(t, .)e ().
Next, setting u--Du, we have P(D, D)u=, Q(D)D[-u--

j=l

(f-Qo(D)u) f. Then u and f satisfy the conditions of Theorem
1, so that the mapping

D=u: (0, To) t-u(t, .) e ()
is continuous, and so on we get the continuity of the mappings

D[u: (0, To) t--D[u(t, .) e c2(=) (j= 2, ..., m-- 1).
--1

Finally we write Q(D)D?u=f-Q(D)D[u, and by using Lemma
3"=0

2 and 3 we get the continuity of the mapping
Du: (0, To) t---,Du(t, .) e ().

This completes the proof. Q.E.D.
Corollary. Let u(t, x) be a classical solutions of P(Dt, D)u(t, x)=

f(t, x) in 9o. Assume that fe C’(9o) and that, for some constant

> O, u e C in ((0, ) ) [J ((0, To) ). Then, we have u e C(2o).
Proof. It is easy to see that f and u satisfy the conditions of

Theorem 1, so that the mappings
(14) D[u: (0, T) t--,D{u(t, .) e ’() (j=0, 1, ..., m)
are continuous. Setting u=Du, we can write Q(D,)u=f-

IQ(D)D[u=-F and for any /3
3"=0

DQ(D)(e(t+ h) u,(t))/h- i oDDF(t+ Oh,

Hence by Lemma 2 and 3 we get the existence of D D,u=DDu
in 90, and the continuity of the mapping

Dg+’u: (0, To) t--D+u(t, ") e ().

Writing Q(D,)D[+u=Df-=o Q(D,)Dt+u, we get u e C=(t?0) by

repeated applications of the above discussion for j=l, 2,.... Q.E.D.
About the propagation of analyticity, using the method of J.

Boman _1 and playing the same discussion as the proof of Theorem

1, we get the following without the proof.
Theorem 2. Let u(t, x) be a classical solution of

P(Dt, D)u(t, x)=f(t, x) in t?o. Assume f and u satisfy the condi-

tions of Theorem 1, and furthermore we assume that, for any

T (0< T< To), there exist constants M and C such that
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Dfl<--MfCrI o in /2,=(0, T) E,
D[ulNM,Cr[ o 1 in (0, T) , (=0, 1, ..., m--l),

and
[D[uMC[ a in (0, )x (j=0, 1, ..., m-l)

for some constants M, C.
Then, for any T (0< T< T0), there exist constants M and C

such that
[D[DuMC a in (0, T)x (j=0, 1, -.., m).

Corollary. Let u(t, x) be a classical solution of P(Dt, D)u(t, x)=
f(t, x) in 9o. Assume that f is analytic in o and that, for some
constant 8>0, u is analytic in ((0, ) ) ((0, To) ). Then, u
is analytic in 0.
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