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By Sakuji INOUE
Faculty of Education, Kumamoto University

(Comm. by Kinjir5 KUNUGI, M.b.A., April 12, 1966)

Let T()be the same notation as that used in the preceding

paper; that is, let T() be a function with singularities {} _UD
=1

such that the denumerably infinite set {} denoting the set of poles
of T() in the sense of the functional analysis is everywhere dense
on a closed or an open rectifiable Jordan curve and that the mutually
disjoint closed (connected) domains D (3"--1 to n) have no point in

common with the closure {} of {} and lie in the disc

Theorem 56. Let the ordinary part of such a function () as
was stated above be a non-zero constant ; let c be an arbitrary
finite complex number; let a=sup 1 ]; let n(p, c) be the number of

c-points, with due count of multiplicity, of T()in the closed domain
{2: pl 2 G + } with a<p< + ; let

+

P <P<+ ),N(p, c)- dr-n( c) log (a

1 C2 +

and let M(p) max IT(pe-)l Then 1 I N(p, se)dO is a decreas-
e [0,.r] 2Z

ing function of s in the interval I ]sM(p) for every p with
a<p<+ and re(p, ) is a decreasing convex function of log p
for the interval a<p< / ; moreover the equality

1 N(p, se)dO-O
2z

holds for every p with a <p< + oo and every s with M(p)___<s < + oo and
the equation T(2)-se--O has no root in the domain {2:
for every 0 e 0, 2z] and every s with M(p)<___s < + .

Proof. Consider the function f() defined by

T
f(2)-- =. 0-_<12 I-_<- a<p< /

(2=0)
where, as already shown before,

1 [C_= 2zi ] I, I=,, 2-+
d (a < p’ < + oo).
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Then f()is regular in the closed domain _l:0ll- with

a<p< -F . We next denote by (r, c) the number of c-points, with
due count of multiplicity, of f() in the closed domain {" 0

r} with 0r and set

r

If we now consider the function g()-a- for a non-zero complex
constant a, then we find with the aid of Jensen’s theorem that

log]a[ ([ a]s)

2l :lg a-se’ dO-(log a -log
a

(
Hence we have for every positive s

(0) 1 log a--e dO-- log +log .
On the other hand,

Here we integrate both sides with respect to 0 and change the
order of integration in the resulting double integral on the right-hand
side. If, for any finite complex value c, all the c-points (repeated

according to the respective orders) of f()in the domain

are denoted by ac ac) a (.o)-(0oo,, we have

1 1 1

= log --n(, c) log p

N(p, c).
Accordingly the application of (40) to the result of the above-

mentioned procedure enables us to attain to the equality

log- -+ log s log T(pe-) dt + log s
s =-- s --- N(p, se)d,

so that

(41) - N(p, se)dO---o log
8 8

(a<p<+oo).
Since, as will be seen from the principle of maximum modulus
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for f(), (41) implies that N(p, se)dt (a<p< -4- )

is a decreasing function of s in the interval ] I<s<M(p) as we
wished to prove. Since, however, (0, seO)--n(, seo)=-O for seO=/:,
it is clear that N(p, seO)>__O for every with a<p< / and every
finite se different from and hence the right-hand side of (41) is
never negative for every pair of such p and se. In particular, we

obtain the desired equality --’N(p, seO)dt-O valid for every

with a <p< -t- and every s with M(p) _s< + , as we were to
prove. Since N(p, sd) >= 0 for every 0 e 0, 2, the final equality
implies that the equation T(.)-sdo=-O has no root in the domain
D{:p<I[<+} for every s with M(p)<=s/ and every
0 e 0, 2zr: for otherwise there would exist uncountably many values

1 N(p, sd)dO> 0 (M(p) < s < + )of 0 such that the inequality

would hold, contrary to fact, as can be verified immediately from
the continuity based on the regularity of T() on D,. If we next
put s--1 in (41), then

m(p, )--- N(p, e)dO+ log (a<p<+)

and so
din(p, 1 n(p, eO)dO
d log p 2 J0

where n(p, e) is a decreasing function of p in the interval a p + .
As a result, it is easily verified that re(p, ) is a decreasing convex
function of log p for a<p< / .

Theorem 57. Let the ordinary part of the function T()stated
d

before be a polynomial ,efl" of degree d; let a be the same notation

as before; and let N(p, seO), re(p, ), and M(p) be the notations
associated with this T() in the same manners as those used to define
N(p, seO), m(p, ), and M(p) in Theorem 56 respectively. Then (

N(p, e)dO ise I<= M(p)/p for every p with a < p< + ii )

an increasing function of s in the interval M(p)<s< + for every
p with a<p< + (iii) there exists an uncountable set of values of
O e [0, 2] such that for any s greater than e P with a<p< +
the equation T(2)-seO=0 has at least one root in the domain
D,{: p<][< + }; (iv) re(p, ) is a convex function of log p for
a<p<+.

Proof. We now consider the function

?(, sdO)_ I(p.)I T(-) se1 (0)

(ep (=0),
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where a <p< d- and 0 -I -< __1. Then we have

0)
where 0 is the notation associated with the number of

/

zeros, with due count of multiplicity, of (, se) in the domain

o-{" 0NI 2 IN} by the same method as that used to define (, c)
for the function f() stated at the beginnig of the proof of Theorem

56. Since, moreover, (, O)--N(p,
log e p_ 1 log[ T(pe-t) -se]dt-N(p, seO).

By the same procedure as that used to establish (41) with the
aid of (40), it is verified immediately from the final equality that

1 N(p, e)gO- 1 +
() . log T(Pe-) dt +log

(a<p<+).
Since N(p, se)O, we can find by setting sM(p) in (42) that

[elp M(p); and in addition, evidently the just established inequality
and (42) imply that both (ii) and (iii) hold. If we next set
in (42), then

re(p, )-- N(O, e)gO+ g log 0+ log ee (<0< + )
and hence

(8) gin(p, ) (p’ e)dO+d (<p< + )d log p
where (p, e) denotes the number of e-oints, with due count
multiplicity, of T(1) in the domain o{i: pNI 2 IN + }. hus (iv) is
shown in the same manner as in heorem

heorem g8. Let T(1) and be the same notations as before,
and let

1+ 1log gt (<p< + , e ).re(p, c)
T(pe-)--c

If the ordinary part of T(2) is a non-zero complex constant or
a polynomial in 2, then

2
m(p, se)dO < log 2 (a<p<+ ,0<s<l).

s
Proof. We begin with the case where the ordinary part of T(2)

is a non-zero complex constant . Let f(2), (r, c), and (, c] be
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the same notations as those defined at the beginning of the proof of
Theorem 56. Then it is clear that (0, c) is not zero if and only if

c- and that .(_1, )-0 (ap+). If we now set

(c, <<+)

f et dt (c-,a<p<+)

and define s(---, c)(j-l, 2)by

we ean find from the inequality log N log 1 I+log valid

for any complex numbers a that e ,c log]ci+log2 for

j--1, 2 and hence can analyze Nevanlinna’s first fundamental theorem,
as follows:

where
(0 (c=)

In fact, for the special case c= we can attain to the second
result of (44) by considering the auxiliary function

f()- c_,- (c_0,
g()- c_ (-0),

P
and the other two cases are trivial. Since, on the other hand, it is

obvious that , c -re(p, c) and c -N(p, c) both hold for

every complex value c, finite or infinite, we obtain
(45) re(p, )=m(p, c)+N(p, c)+K(p, c) (c, ; a<p< + ),
where K(p, c)-log -c,+e(,,, c). The application of (40)and (41)
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to (45) yields the relation

re(p, o)--___jo re(p, se’)dO+ log T(pe-9 + log s

valid

-l-,--I ’/loe.((-, seO)d0
+ + lfor a<p<+; and by utilizing logs-logs-log and

(1 )e.-p-, se _-<log s/log2 to this result, we can easily show the

validity of the inequality required in the statement of the theorem.
d

Suppose next that the ordinary part of T(,) is given by -efl
where e=O. We eonsider the function f(,D-T(-)or the funetion

(7, c) defined at the beginning of the proof of Theorem 57, according
as c- or c=. If we set

1 log T(pe-")ldt- log’
(,ap+ ),

hen, by reasoning exactly like ha applied before, we can verify
wih he help of hese auxiliary uneions ha

(p, )=re(p, )+ N(p, )+ ’(p, ),(46)
where

[dlogp (c-);

and here - -, c _-<log]c[+log2. Since (46) and (42) enable us to

conclude that
i [ i r +

re(p, oo )-_2_ re(p, sd)dO+ )o log T(pe-’*) dt

1/1)o+og s+ , se dO (a <p< + ),
the desired inequality in the statement of the theorem is established
in the same manner as before.


