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73. The Plancherel Formula for the Lorentz
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By Tukeshi HIRAI
Department of Mathematics, University of Kyoto

(Comm. by Kinjir5 KUNUGI, M.J.A., April 12, 1966)

Let G(n) be the Lorentz group of n-th order, that is, the group
of n-th order matrices g such that

tgjg__j, det g-1 and gl, ( 1
with 1 0

i
0 --i

In this note, we derive the Plancherel formula for G(n). And
we add some indications for the universal covering group G(n) of
G(n) when n=3). The formula has the same form as for G(n) itself.

As is well known, for an infinitely differentiable function f(g)
on G(n) with compact carrier and an irreducible unitary representa-
tion g--.T, the operator

T-- If(g) Tdl(g)
has a trace in the corresponding representation space (here dl(g) is
a Haar measure on G(n)). This trace can be expressed by an
invariant function (g) on G(n) as

Sp( Tf)- If(glz(g)dt(g).
This function (g) is called the character of the representation g-T.

The series of irreducible unitary representations which appear
in the decomposition of a regular representation (i.e. principal series)
was classified in [1] and their characters was obtained in [2.
Moreover the author proved recently that the reperesentations of
the Lie algebra of G(n) listed in [1 exhaust all algebraically
irreducible ones which are induced by completely irreducible repre-
sentations of G(n). Therefore the results in _1] and 2 can be
considered as the results concerning all infinitesimally equivalent
classes of the completely irreducible representations of G(n).

With the same notations in these papers, the principal series
are the continuous series: (;) and, in case n is odd, the discrete
series: D(+.;) and D.;). For (;), that trace is denoted by Sp(T])

iswith Z (a;ip), and the sum of the traces of D(;,)and
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denoted by Sp(T]) with =(p, a).
1. Case of n=2k+3 (k=0,1,2, ...).
For a representation (,) in the continuous series, i=V-1, p e R

(real number) and a=(n, n., ..., n) is a row of integers such that
O <n<n. <n.

We put l=n+r-1/2
For representations Df,;) and D:) in the discrete series, p is

an integer and a=(n, n:,..., n) is a row of integers such that,
putting no= p,

Put l=n+(r- 1/2) (0 r < k) as before.
Then the Plancherel formula has the form

cf(e)- , IiP(l, l, ..., l, -ip).thTcp Sp(T])dp
0</1</2<

+ , P(lo, l, l., ..., l)Sp(T}), 2 )
O<lo<ll<12<

where e is the identy element of G(n) and P(X, X.,..., X+) is a
polynomial of X, X, ..., X+ corresponding to the product of all
positive roots of Lie algebra of G(n), that is,

P(X, X, ..., X+)=XX X+ 1-I (X}-X:). 8 )
l<s<’</+l

The constant c>0 must be determined with respect to some normali-
zation of Haar measure of G(n).

The plancherel formula for G(n) differ from the one for G(n)
only that the sums in (2) must be taken also for two-valued repre-
sentations, that is, )( ;, D+ and DS. (except the ones with
p=1/2) for which all n in a=(n, n, ..., n) and/9 are half-integers
satisfying respectively the inequalities indicated above @1/2).

As the colorary of this Plancherel formula, we know that all
unitary representations D/ and DG are square-summable and no
other irreducible unitary representations of G(n)is square-summable.
But for the group G(n), if p-1/2, D;v and D;v are not square-
summable as for the case n=8.

2. Case of n=2k+2 (k=l, 2, ...).
In this case, the derivation of the Plancherel formula are quite

similar for complex classical groups, because there exists only one
conjugate class of Caftan subgroup. But, for the completeness, we
state here its explicite formula.

The parameter (v; ip) of a representation; in the continuous
series is such that i=3/-1, per and =(n,n,...,n) is a row
of integers satisfying

nl <n.< <n.
Putting l n+ (r- 1) (1 < r< k), the Plancherel formula has the form
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cf(e)--
I11<.< <

where P(X,, X, X+) is a polynomial corresponding to the product
of all positive roots of Lie algebra of G(n), that is,

P(X , ..., II (X:-X:). (5)

The constant c> 0 can be determined by the similar method employed
in 3 for complex classical groups.

The plancherel formula for G(n) has the same form but the sum
in (4) must be taken also for two-valued representations

3. For the case of odd n, G(n) has two conjugate classes of
Cartan subgroup. The method employed in this case by the author
is essentially the same that is outlined by Harish-Chandra in [4.

Using Harish-Chandra’s deep results in _4 and [5 concerning
the function F on Cartan subgroups (constructed from f, see [4),
the problem is reduced to the deduction of some relations containing
values of derived functions of F on hypersurfaces of their discon-
tinuities. The reason is as follows. The traces Sp(T]) and Sp(T})
are expressed by certain sums of Fourier coefficients or Fourier-Laplace
transformations of F. The value of f at e can be expressed as
follows in two terms when we rewrite using the Fourier coefficients
of F the right side of the following equality in

cf(e)=6(zr’)F,(e).
The first term cosists of the above mentioned sums of Fourier coef-
ficients of F and therefore can be expressed by Sp(T])and Sp(T}).
The second term cosists of boundary values of F and its derived
functions at singular elements of the Cartan subgroups. If we can
prove that the second term is equal to zero, then we obtain the
desired formula. For this, it needs some relations between these
boundary values, containing the values of F and its derived functions
on hypersurfaces of their discontinuity. We call these relations
simply gap-relations.

The first method deducing the necessary gap-relations is very
simple and has rather algebraic character. If we write down
explicitely the fact that the characters of finite dimensional represen-
tations of G(n) are eigendistributions of the Casimir operator of
G(n), we can obtain a gap-relation of the derived functions of first
order of F. The necessary gap-relations of derived functions of
higher order can be obtained from this one by the results in [5_.
Also, they can be deduced by using another Laplace operators on
G(n) instead of the Casimir operator.

Another method of deducing necessary gap-relations is the direct
calculation using the integral expressions of F as for the case
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n=3 in E6J.
Another method which can be employed to prove that the second

term must be zero is the one used by Mr. K. Okamoto for the de
Sittre group. This method needs not any gap-relation. From the
boundedness of the numerators of the characters in [2 of (,),
D+, and D.,, we can prove that the second term must be zero,
by Riemann-Lebesgue theorem on Fourier series.

At the end, the author expresses his thanks to Mr. K. Okamoto
who delivered his proof for the de Sittre group.
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