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102. On Characterizations of I.Algebra.

By Yasuo SET5 and ShStar5 TANAKA
(Comm. by Kinjir5 KuNuoL M.Z.., May 12. 1966)

In this paper, we shall show that an axiomatic system of implica-
tional calculus given by C. A. Meredith is equivalent to Tarski-
Bernays’ axiom system using an algebraic formulation.

In his paper 2, Prof. K. Iski has proved that Tarski-Bernays’
axiom system implies Meredith’s system and other systems. Further
Prof. K. Iski refers Tarski-Bernays’ axiom system as/-algebra. We
shall prove that Meredith’s alternative 4-axiom set implies Tarski-
Bernays’ system. We shall carry out this proof algebraically.

Let X, 0, ,} be an abstract algebra. For the notion of this
algebra and notations, see [1. The alternative 4-axiom set is given
as the following 1-4, D1-D3.

1 y,(y*x)x,
2 (z,x),(z,y)y,x,
3 y,x(y,x),x,
4 x,(x*y)y*(y,x),
D1 x<y means x,y=0,
D2 0<x,
D3 xy, yx imply x=y.
In 2, put y,(y,x) for y, then we have
(z x) (z (y (y x))) < (y (y x)) x.

By 1 the right side of the above is equal to 0. Hence, by D1, D2,
and D3, we have

5 z,x<z,(y*(y*x)).
If we put x (z, y) x, y (z x) (z (z, y)), z (z x) y in 2, then

we have
(((z x) y) ((z y) x)) (((z x) ) ((z x) (z (z ))))
< ((z x) (z (z y))) ((z y) x).

We see the right side is equal to 0, putting y=z,y in 2. At the
same time, we see the second term of the left side is equal to 0,
putting x-y, y-z, z-z,x in 5. Hence we have

6 (z,x),y(z,y),x.
In 2, put y=y, (y, x), z x, (x, y), and apply 1, 2 to it, we have
7 (x,(x,y))<x.
In 6, put y=x,y, z--x, then we have (x,x),(x,y)(x,(x,y)),x.

By 7, the right side is equal to 0. Hence we have
8 x,x<x,y.



No. 5 Characterizations of /-Algebra. I 447

In 4, put y--y,x, then we have x,(x,(y,x))<(y,x),((y,x),x).
By 3, the right side is equal to 0. Hence we have

9 x<(x,(y,x)).
In 8, put y--x,(y,x), then we have x,x<x,(x,(y,x)). By 9,

the right side is equal to 0. Hence we have
10 x<x.
In 6, put z= y, then we have (y, x), y< (y, y) x. The formula 10

means y,y=0. Hence we have 0,x=0 by D1 and D2. Therefore
we have

1]. y,xy.
Theses 2, 9, and 11 are axioms of Tarski-Bernays’ system.
Therefore the proof is complete.
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