438 [Vol. 42,

99. Obstructions to Locally Flat Embeddings of Bounded Combinatorial Manifolds

By Masako UJIHARA Waseda University, Tokyo

(Comm. by Kinjirô Kunugi, M.J.A., May 12, 1966)

In the paper [1], H. Noguchi showed that for any proper (p+1)-flat embedding $f: M \rightarrow W$, where M is an oriented closed n-manifold and W is an oriented (n+2)-manifold without boundary, the p-homology class Ω_f of M, called the Whitehead class of f, is defined, and if $\Omega_f = 0$, the embedding f can be arbitrarily approximated by a p-flat embedding $g: M \rightarrow W$, $0 \le p \le n-2$.

We will extend this for bounded manifolds M and W as follows. Let M be a compact oriented n-manifold with non-vacuous boundary ∂M , and W be an oriented (n+2)-manifold with non-vacuous boundary ∂W . Let $f: M \rightarrow W$ be a proper embedding; that is to say, $f(\operatorname{Int} M) \subset \operatorname{Int} W$ and $f(\partial M) \subset \partial W$. Then, by § 4 of [1], f is (n-1)-flat. Hence it is assumed that f is a (p+1)-flat embedding, $0 \le p \le n-2$.

Next we define the p-homology class $\Omega_f \in H_p(M, \partial M; G^{n-p-1})$ of $M \mod \partial M$, called the Whitehead class of the embedding f, where G^{n-p-1} is the knot cobordism group of dimension n-p-1. In fact by Theorem 3 of [2] (see §1 of [1]), the class Ω_f is invariant under the iso-neighboring relation of proper embeddings of M in W.

The main result of the paper is as follows.

Theorem. If the Whitehead class Ω_f of f is the identity, f can be arbitrarily approximated by a p-flat embedding.

If C is an n-cell, then $H_p(C, \partial C; G^{n-p-1})=0$ for $0 \le p \le n-2$, and we have the following.

Corollary 1. Let C, D be n-, (n+2)-cells and $f: C \rightarrow D$ be a proper embedding. Then f is arbitrarily approximated by a locally flat embedding.

Since $H_0(M, \partial M; G^{n-1})=0$ for each manifold M with non-vacuous boundary ∂M , we have the following.

Corollary 2. Any 1-flat proper embedding $f: M \rightarrow W$ can be arbitrarily approximated by a locally flat embedding.

From now on it will be assumed that the embedding $f: M \rightarrow W$ is (p+1)-flat.

Notation. Let $\varphi \colon K \to L$ be a triangulation of f. Then ∂K means a subcomplex of K covering ∂M , and Int K means the set of simplexes $K - \partial K$. Let \triangle be an oriented r-simplex of ∂K . Then $\nabla_{\partial}(\Box_{\partial})$ is an

(n-r-1)-cell ((n-r+1)-cell) dual to $\triangle(\varphi\triangle)$ in $\partial K(\partial L)$ whose orientation is induced from $\partial \nabla(\partial \Box)$ (for ∇ , \Box see [1]). The barycenter of \triangle will be denoted by c.

Lemma 1. For each oriented r-simplex \triangle of ∂K , the pair $\partial(f \nabla, \Box)$ -Int $(f \nabla_{\partial}, \Box_{\partial})$ is homeomorphic to $(fLk(\triangle, K), Lk(f\triangle, L))$, and is flat if r > p and (p-r)-flat if $r \le p$.

Proof. Since $(f \nabla, \Box)$ is homeomorphic to the join $(fLk(\triangle, K), Lk(f\triangle, L))*fc$, $\partial(f \nabla, \Box)$ is homeomorphic to $\partial(fLk(\triangle, K), Lk(f\triangle, L))*fc \cup (fLk(\triangle, K), Lk(f\triangle, L))$. Since $\partial(fLk(\triangle, K), Lk(f\triangle, L))$ is homeomorphic to $(fLk(\triangle, \partial K), Lk(f\triangle, \partial L))$, $\partial(fLk(\triangle, K), Lk(f\triangle, L))*fc$ is homeomorphic to $(f\nabla_{\partial}, \Box_{\partial})$. Hence $\partial(f\nabla, \Box) - \text{Int}(f\nabla_{\partial}, \Box_{\partial})$ is homeomorphic to $(fLk(\triangle, K), Lk(f\triangle, L))$. Let x be an interior point of \triangle , then $Lk(x, \varphi)$ is homeomorphic to $\partial(\varphi)*(fLk(\triangle, K), Lk(f\triangle, L))$. The nthe last half of the lemma follows from the argument of Lemma 11 of 1.

Definition. In the paper a knot is a locally flat sphere pair and a node is a locally flat cell pair, see [1]. Let \triangle_i be an oriented p-simplex of Int K, then $\partial(f \nabla_i, \Box_i)$ is an (n-p-1)-knot by Lemma 11 of [1]. By κ_i we denote the knot cobordism class of $\partial(f \nabla_i, \Box_i)$. Then we have a p-chain

$$\omega = \sum_{i} \kappa_{i} \triangle_{i}$$

of $K \mod \partial K$ with the (n-p-1)-knot cobordism group G^{n-p-1} as the coefficient group, where \triangle_i ranges over the p-simplexes of Int K.

It is shown by Lemmas 12 and 14 of [1] that this p-chain is a p-cycle of K mod ∂K and that the homology class $\Omega_f \in H_p(M, \partial M; G^{n-p-1})$ of ω is invariant under the subdivision $\varphi \colon K \longrightarrow L$, and is an invariant of the iso-neighboring relation. We call Ω_f the Whitehead class of the embedding f of M in W.

Lemma 2. Let (S, T) be a sphere pair such that $(S, T) = (C_1, D_1) \cup (C_2, D_2)$, where C_i , D_i are m, (m+2)-cells, i=1, 2, and $(C_1, D_1) \cap (C_2, D_2) = \partial(C_1, D_1) = -\partial(C_2, D_2)$. If (C_1, D_1) is a node, there is a knot (\widetilde{S}, T) such that $(\widetilde{S}, T) \cap D_1 = (\widetilde{S} \cap D_1, T \cap D_1) = (C_1, D_1)$ and (\widetilde{S}, T) is knot cobordant to zero.

Proof. Let (C_1', D_1') be a copy of (C_1, D_1) , and identify D_1' with $-D_2$ in such a way that $-\partial(C_1', D_1')$ and $\partial(C_2, D_2)$ are identified. Then $(C_1, D_1) \cup (-(C_1', -D_2)) = (C_1 \cup (-C_1'), T) = (S', T)$ is a knot by the proof of Lemmas 6 and 7 of [1]. Let κ be a knot cobordism class of (S', T) and κ a point of Int $(-C_1')$. Then $St(x, (S', T)) = (C_3, D_3)$ is flat. By an argument similar to the one above, we may cut (C_3, D_3) from (S', T) and glue to (S', T) a node (C_3', D_3) with boundary $\partial(C_3, D_3)$, where $(C_3', D_3) \cup \partial(C_3', D_3) * y$ is a knot representing $-\kappa$. Then $((S', T) - \text{Int } (C_3, D_3)) \cup (C_3', D_3) = (\widetilde{S}, T)$ is knot cobordant to zero by Lemma 10 of [1], and (\widetilde{S}, T) is the

required knot.

Lemma 3. Let $g: M \rightarrow W$ be a (p+1)-flat embedding. Let \triangle be an oriented p-simplex of $\partial \widetilde{K}$, where $\widetilde{\varphi}: \widetilde{K} \rightarrow \widetilde{L}$ is a triangulation of g. Then there is an (n-p)-node $(\widetilde{\nabla}, \square)$ such that $\partial (\widetilde{\nabla}, \square) \cap (\partial \square - \operatorname{Int} \square_{\partial}) = \partial (g \nabla, \square) - \operatorname{Int} (g \nabla_{\partial}, \square_{\partial})$, and we have an embedding $h_{\Delta}: M \rightarrow W$ such that

- $(1) \quad h_{\triangle}(M) = (g(M) \operatorname{Int} g(\partial \triangle * \nabla)) \cup \operatorname{Int} (g \partial \triangle * \widetilde{\nabla})$
- $(2) \quad h_{\triangle} \mid M \partial \triangle * (\operatorname{Int} \bigtriangledown \cup \operatorname{Int} \bigtriangledown_{\partial}) = g \mid M \partial \triangle * (\operatorname{Int} \bigtriangledown \cup \operatorname{Int} \bigtriangledown_{\partial})$
- (3) h_{\triangle} is flat at each point of $\partial \triangle * \nabla \partial \triangle$.

Consequently, h_{\triangle} is flat at a point x of Int M if g is.

Proof. Let $\partial(g \bigtriangledown, \Box) - \operatorname{Int}(g \bigtriangledown_{\partial}, \Box_{\partial}) = (C, D)$; then $\partial(g \bigtriangledown, \Box) = (C, D) \cup (g \bigtriangledown_{\partial}, \Box_{\partial})$, and $(C, D) \cap (g \bigtriangledown_{\partial}, \Box_{\partial}) = \partial(C, D) = -\partial(g \bigtriangledown_{\partial}, \Box_{\partial})$. By Lemma 1, (C, D) is an (n-p-1)-node, and by Lemma 2, we have a knot $(\partial \heartsuit, \partial \Box)$ which is knot cobordant to zero, and such that $(\partial \heartsuit, \partial \Box) \cap (\partial \Box - \operatorname{Int} \Box_{\partial}) = \partial(g \bigtriangledown, \Box) - \operatorname{Int}(\bigtriangledown_{\partial}, \Box_{\partial})$. Then we have a node (\heartsuit, \Box) with boundary $(\partial \heartsuit, \partial \Box)$ that has the required property.

The construction of the required embedding h_{Δ} using $\widetilde{\nabla}$ is the same as Lemma 15 of [1], and so we will omit the proof.

Proof of theorem. For a given ε -neighborhood of fM in W, we subdivide K, L so fine that the diameter of the star of every simplex of φK in L is smaller than ε , where $\varphi \colon K \to L$ is a triangulation of f. Let $\omega = \sum_i \kappa_i \triangle_i$ be the p-cycle mod ∂M obtained from φ . By the assumption $\Omega_f = 0$, there is a (p+1)-chain γ of K such that $\partial \gamma = \omega + \beta$, where β is a p-chain of ∂K . Then by the argument of the proof of the main Theorem of [1], we have an embedding $g \colon M \to W$ such that g is flat at $x \in (M-|K^p|) \cup \bigcup_{\Delta} \operatorname{Int} \triangle$, where Δ is a p-simplex of \mathbb{Z} in \mathbb{Z} in \mathbb{Z} , where \mathbb{Z} is a \mathbb{Z} in \mathbb{Z} in \mathbb{Z} , where \mathbb{Z} is a \mathbb{Z} in \mathbb{Z} in \mathbb{Z} in \mathbb{Z} , where \mathbb{Z} is a subdivision of \mathbb{Z} . Define \mathbb{Z} by taking \mathbb{Z} in \mathbb{Z} in \mathbb{Z} in \mathbb{Z} , and \mathbb{Z} in \mathbb{Z} in

References

- [1] H. Noguchi: Obstructions to locally flat embeddings of combinatorial manifolds (to appear).
- [2] J. F. P. Hudson and E. C. Zeeman: On regular neighbourhoods, Proc, London Math. Soc., 14, 719-745 (1964).