96. A Remark on a Comprehension Axiom without Negation

By Takashi NAGASHIMA

Department of the Foundations of Mathematical Sciences, Tokyo University of Education

(Comm. by Zyoiti SUETUNA, M.J.A., May 12, 1966)

In his paper [2], Skolem has proved the consistency of the system of the following axioms

(1) $\exists y \forall z (z \in y \mapsto \mathfrak{F}(z))$ and

 $(2) \qquad \forall x \forall y (\forall z (z \in x \vdash z \in y) \vdash (\mathfrak{G}(x) \vdash \mathfrak{G}(y))),$

where the formula \mathfrak{F} in (1) is constructed only from \in , \vee , \wedge , \wedge , \vee and variables. The purpose of this paper is to show the following generalization of this Skolem's theorem. This generalization implies Namba's result in [1] as well.

Theorem. The system of axioms (1) and (2) is consistent if no logical constants except \forall , \land , \land , \lor , \forall , and \exists occur in \mathfrak{F} .

For the proof of his theorem, Skolem has introduced a model satisfying the axioms. Now it will be shown that Skolem's model satisfies the axioms even if \mathfrak{F} has quantifiers.

Let \mathfrak{D} be a domain of individuals A_i , $B_i(0 \le i < \omega)$ and W, and we define the relation \in as follows:

(i) $A_i \in B_j$ if and only if $j \leq i$,

(ii) $B_i \in A_j$ if and only if i < j,

(iii) $A_i \notin A_j$ and $B_i \in B_j$ for all i and j,

(iv) $A_i \notin W$, $W \notin A_i$, $B_i \in W$, and $W \in B_i$ for all i,

 $(\mathbf{v}) \quad W \in W.$

Then \mathfrak{D} is linearly ordered as

$$A_0 \subseteq A_1 \subseteq \cdots \subseteq W \subseteq \cdots \subseteq B_1 \subseteq B_0,$$

where \subseteq denotes the inclusion relation as usual. Therefore the operations $a \cap b$ and $a \cup b$ can be defined for any a and b in \mathfrak{D} . The individuals A_0 and B_0 are written O and V respectively.

We define the operations * and E as follows:

$$A_{i}^{*} = A_{i+1}, \ W^{*} = W, \ B_{i}^{*} = B_{i+1}, \ E(a, b) = \begin{cases} V \text{ if } a \in b, \\ O \text{ otherwise.} \end{cases}$$

Then $\forall x(x \in W \mapsto x \in x)$, $\forall x(x \in a^* \mapsto a \in x)$, and $\forall x(x \in E(a, b) \mapsto a \in b)$ are valid in \mathfrak{D} . Since the operations \cap , \cup , *, and E are monotone with respect to \subseteq , we have the following T. NAGASHIMA

Proposition 1. If f(a) is constructed from O, V, W, \cap, \cup , *. E. and variables, then A

$$f(x) \forall y (x \subseteq y \vdash f(x) \subseteq f(y))$$

is valid in \mathfrak{D} .

Consequently, we obtain the following

Proposition 2. Let f(a) be a term consisting of O, V, W, \cap . \cup , *, E, and variables, such that

$$\forall z (z \in f(a) \mapsto \mathfrak{H}(z, a))$$

is satisfied in D. Then

$$\forall z (z \in f(O) \mapsto \forall x \mathfrak{H}(z, x))$$

and

 $\forall z (z \in f(V) \mapsto \exists x \mathfrak{D}(z, x))$

are satisfied in \mathfrak{D} .

Proposition 3. For any formula & containing no other logical constants than \forall , \land , \land , \lor , \forall , and \exists , there exists a term t constructed only from O, V, W, \cap , \cup , *, E, and variables, such that $\forall z (z \in t \mapsto \mathfrak{F}(z))$

is satisfied in \mathfrak{D} .

This proposition can be easily proved by induction on the construction of the formula \mathfrak{F} . Since axiom (2) is evidently valid in \mathfrak{D} , this completes the proof of Theorem.

Let \mathfrak{D}' be the model whose only difference from \mathfrak{D} is that \in is defined by (i)-(iv) and $W \notin W$. Then axioms (1) and (2) are satisfied in \mathfrak{D}' as well. As shown in [2], there is no finite model satisfying axiom (1).

References

- [1] K. Namba: On a comprehension axiom without negation. Ann. Japan Assoc. Philos, Sci., 2, 258-271 (1965).
- [2] Th. Skolem: Investigations on a comprehension axiom without negation in the defining propositional functions. Notre Dame J. Formal Logic, 1, 13-22 (1960).