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138. F.Bundles and Almost F.Structures. II

By Akira ASADA
Department of Mathematics, Sinsyu University, Matumoto

(Comm. by Kinjir6 KuNuc,I, M.b.A., June 13, 1966)

In E2_, the author introduce the notion of almost F-structure and
give an integrability condition of almost F-structures. It suggests us
that there seems to be useful that to use some differential geometric
aspects of tangent microbundles in the study of F-structures. In
this note, we treat pseudoconnections of topological microbundles
which was defined in _2, and show the following theorem: There
is a 1 to i correspondence between the set of equivalence classes of
F-structures on X and the set of F-equivalence classes of pseudoflat

F-bundle structures of the diagram X ;XX . ,X, where 2 is
the diagonal map and p is the projection to the first component
(cf. [4). Notations of this note are similar that of 1, 2.

1. Pseudoconnection of topological microbundles. For an ele-
ment a of R", we define the parallel transformation t by

t(b)=b-a, b e R.
Lemma 1. A homeomorphism f from a neighborhood of the

origin of R into R is a parallel transformation if and only if
(df)(a, b)=b--a,

where (df)(a, b)=f(b)-f(a).
0n the other hand, if av e C(U, R), then

( (t)(x0, x,
where the multiplication is defined to be the compositions of R and
(t) and (a) are given by

(t)(Xo, x, x)=
(a)(x0, x, x)=a(x, x)-a(Xo, x)+a(Xo, x).

efinition. Let {(x)} be a transition function of an
n-dimensional topological microbundle over normal paracompact
topological space X, then a collection {t(,)}, a(x, y)e C(U, R),
is called a pseudoconnection of {e(x)} if {t} satisfies
2 (x)-t(,)(y)=t(,).

According to [1, we call the collection {(t)} to be the curvature
form of {t}.

Definition. We call {t} is a flat pseudoconnection if the
curvature form {(t)} of {t} is equal to 0.

Definition. {(x)} is called a pseudoflat microbundle if {e(x)}
has a flat pseudoconnection.
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Example. Let X= { U, hv} is a paracompact topological manifold,
then setting

h,(y)- hr(y)- hr(x), g(x)=h,h,-,
{g(x)} is a pseudoflat microbundle with flat pseudoconnection {s,,},
where sv,, is given by

s ,, h,h,
Lemma 2. If {t,} is a fiat pseudoconnection, then with

suitable covering system of X, we can write

Definition. A flat pseudoconnection is called non-degenerate if
each given by (3) defines a homeomorphism from U into

Note. This definition does not depend on the choice of {}.
Since h is a homeomorphism from U into R, the pseudoconnection

{s,,} of {g(x)} given in the above example is non-degenerate.
Lemma . If X is a paracompact n-dimensional topological

manifold, {(x)} is a transition function of an n-dimensional
topological microbundle and {F(x)} has a non-degenerate fiat
pseudoconnection, then is the tangent microbundle of x.

2. Transition function comes from the structure. In the
rest, we assume that X is a paracompact manifold and fix its
dimension n.

Definition. A transition function {g( )} of the tangent
microbundle of X is called a transition function comes from the
(topological) structure of X if we can set

g(x)--h,h, h,(y)-h(y)-- h(x),
where h is a homeomorphism from U into R.

Definition. If in the above, {U, h} defines a F-structure of
X, then we call {g(x)} comes from the F-structure of X.

In the rest, we assume that the elements of F are the homeo-
morphisms from some open set of R into R. Here n is the (fixed)
dimension of X.

Lemma 4. A transition function {(x)} of the tangent
microbundle of X comes from the structure of X if and only if
{F(x)} has a non-degenerate fiat pseudoconnection.

We fix a transition function {g(x)}-{h,h,-} of the tangent
microbundle v of X and its non-degenerate flat pseudoconnection
{s,,}-{h, , } Here { U, h} defines the topological structure of X.
Then another transition function of v is written as {(x)g(x)(x)-},
where (x) is a homeomorphism from some open set of R into R
and (x)(0)-0 for any x and U. For this {(x)}, we obtain by
lemma 1 and lemma 4,

Theorem 1. {F(x)g(x)(x)-} comes from the structure of
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X if and only if ?(x) satisfies
4 d(v(x)s,,(y)-)(a, b)--b--a,

for all U, with suitable covering system of X.
By lemma 1, we can rewrite (4) as

4 )’ (x)sr,,(y)-=t,), e C(U, R).
For this a, we define the map at: U UUR by
5 ) (x, a (x, y)).

Then we can give a microbundle structure of the diagram X
X X: p

X by the diagram
UU

UR
Note. The microbundle structure of the diagram X >X

X p >X given by this way, is pseudoflat and the collection {t}
becomes its (non-degenerate flat) pseudoconnection.. Classification of F-structures. As in [2, we denote by F
a pseudogroup consisted by a set of homeomorphisms from some
open sets of R into R. We assume that F contains all parallel
transformations of R, where n is the fixed dimension of X.

In [2, we define an almost F-structure on X as the collection
{(x)} such that
6 (x)g(x)(x)-e F.,

where (x) is a cross-section from U into H.(n). If {U’} is a
refinement of {U}, then we identify the almost F-structure {(x)}
and {e(x) U’}.

Lemma . There is a refinemen$ {U’} of {U} and a repre-
sentation {,(x)} of u’} such that
6 )’ ,(x)g,,(x),(x)-e F.

For the simplicity, we denote {U} and {(x)} instead of {U’}
and {,(x)}.

Since F contains all parallel transformations of R, if the above
[(x)} satisfies (4), then we get
7 ) (x)s,,(y)-e F,

which is the integrability condition of almost F-structures (cf.
2, ()).

Lemma 6. U the collvction {e(x)} and {@(x)} both satisfy
(4), (6)’ and the following

then they define same F-structure of X.
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Proof. We set

then since {t.} and {t.,} are flat pseudoconnections, we can set
a (x,

by using suitable cobering system of X, which is also denoted by
{ U}. Since we obtain

t()-(x)h, t()-(y)h,,

we may denote
h=ta-()(x)hr,,
h:=t,()-(x)h,.

Then by (6)’, using suitable covering system {U, h}, and {U, h:}
define F-structures on X and since we have by (8)

h(h)-=t(-(x)(x)-t,() e F,
che F-structures defined by them are equivalent. Therefore we get
the lemma.

Since a F-structure on X is defined by a collection {U, h’},
h’h’- F, any F-structure on X has a transition function comes from
the F-structure. Therefore we obtain by theorem 1 and lemma 6,

Theorem 2. Two F-structures on X are equivalent if and
only if {(x)} and {(x)} satisfy (8) by suitable covering system
of X.

Here {(x)g(x)(x)-} and {(x)g(x)(x)-} are the tran-
sition functions comes from these two F-structures.

Note. If F is a subpseudogroup of F and contains all parallel
transformations of R, then we get similar theorem about the clas-
sification of F-structures on a F-manifold.

4. F-equivalence of pseudoflat F-bundle structures of the dia-

gram X
,
>X X X.

Definition. Let {U, h’} be a F-structure on X, then the
p

microbundle structure of the diagramXX X given by
UU

U s,,’ U

UR
s,,’--h,’,,’-, is called the associated (pseudoflat) F-bundle of the
F-structure { U, h’}.

Since a microbundle structure of the diagram XXX. X
is given by the diagram
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UxU

/
U I U

UxR"
we denote this microbundle sructure bX i({})o Then we

Lemma 7. ({}) is a pseudofla$ microbundle if and only if
9 ) (8av)(x, y)-O.

If ({a}) is a pseudoflat microbundle, then we can set
a (x, y)-

and the transition function of ({a}) is given by {,,N.,,-}. There-
fore we get

Lemma 8. ({a}) is a F-bundle if and only if the germ of,,- at x belongs in F. for all x e X and {U, V}.
If ({av}) and ({a’}) are two microbundle structures of the

diagram X ,XxX X, then there is a collection of homeomor-
phisms f from Ux R" to Ux R such that the diagram

UxR

UxR
is commutative for any U. We denote the germ of the
f,: R ,R defined by f,()=f(, ) in H.() by f,.

Definition. wo (seudoflat) F-bundle structures ({}) and

({’}) of the diagram X -,Xx X X is called P-equialen., defined by the diagram (10) belongs in F. for any and U.
sing this terminology, theorem is rewritten as follows.
Theorem 2’. Thee i a 1 to 1 eoepodeee betwee the

set of equivalence classes of F-strctres on X and the set of
F-equivalence classes of pseudoflat F-bundle structures of the dia-

gram X XxXX.
Note. We can obtain similar theorem concerning the classifi-

cation of F-structures on a F-manifold.
5. A uniqueness condition of F-structures of F-manifolds.

We assume F is a subpseudogroup of F which contains all parallel
transformations of R. The map from H(x, F.,) into H(x, F.,)
induced from the inclusion of F into F is denoted by v*. We also
assume that the pair (F, F) satisfies following condition.
(U). If we fix a F-structure of R", then this F-manifold R has
at most one F-structure.
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Lemma 9. If (x) satisfies (4), then we have
(11) ?e(y)(a)= ?(x)(a+ h(y)-- h(x))

--(x)(h(y)--h(x)), x, y e U, a e R.
Corollary. If (x) satisfies (4), then its value on U is de-

termined uniquely by its value at a point of U.
Note. By (11), if the values of are diffeomorphisms, then

we get
(12) Jo((y))--J((x))(h(y)-- h(x)).

Using theorem 2 and lemma 9, we can prove
Theorem 3. If the pair (F, F1) satisfies the condition (U)

and the map v*:HI(X, FI.c) ;H(X,F.c) is injective for all
paracompact manifold X, then a F-manifold has at most one
F-structure.

Corollary. (Cf. [2, [3, [5, [6). If F-structure of R is
unique and the homotopy types of Fo and F,0 (cf. [2, n4) are
same, then a F-manifold has at most one F-structure. Here the
topology of F,o is that of induced from Fo, but they need not be
the compact open topology.

Note. Denoting . the group of all parallel transformations of
R, then . is contained in any F and R has an .-structure.
Therefore, for any F, R becomes a F-manifold. But the F-
structures of R a,re not unique in general. For example, the
complex structures of R are not unique although n=l.
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