620 [Vol. 42,

138. Γ -Bundles and Almost Γ -Structures. II

By Akira Asada

Department of Mathematics, Sinsyu University, Matumoto (Comm. by Kinjirô Kunugi, M.J.A., June 13, 1966)

In [2], the author introduce the notion of almost Γ -structure and give an integrability condition of almost Γ -structures. It suggests us that there seems to be useful that to use some differential geometric aspects of tangent microbundles in the study of Γ -structures. In this note, we treat pseudoconnections of topological microbundles which was defined in [2], and show the following theorem: There is a 1 to 1 correspondence between the set of equivalence classes of Γ -structures on X and the set of Γ -equivalence classes of pseudoflat Γ -bundle structures of the diagram $X \xrightarrow{\Delta} X \times X \xrightarrow{p} X$, where Δ is the diagonal map and p is the projection to the first component (cf. [4]). Notations of this note are similar that of [1], [2].

1. Pseudoconnection of topological microbundles. For an element a of \mathbb{R}^n , we define the parallel transformation t_a by

$$t_a(b) = b - a, b \in \mathbb{R}^n$$
.

Lemma 1. A homeomorphism f from a neighborhood of the origin of \mathbf{R}^n into \mathbf{R}^n is a parallel transformation if and only if (df)(a, b) = b - a,

where (df)(a, b) = f(b) - f(a).

On the other hand, if $\alpha_{U} \in C^{1}(U, \mathbb{R}^{n})$, then

(1)
$$\delta(t_{\alpha_{II}})(x_0, x_1, x_2) = t_{(\delta \alpha_{II})(x_0, x_1, x_2)},$$

where the multiplication is defined to be the compositions of R^n and $\delta(t_{\alpha_U})$ and $(\delta\alpha_U)$ are given by

$$\begin{array}{l} \delta(t_{\alpha_{\overline{U}}})(x_0, \, x_1, \, x_2) \!=\! t_{\alpha_{\overline{U}}(x_1, x_2)} t_{\alpha_{\overline{U}}(x_0, x_2)}^{-1} t_{\alpha_{\overline{U}}(x_0, x_1)}, \\ (\delta \alpha_{\overline{U}})(x_0, \, x_1, \, x_2) \!=\! \alpha_{\overline{U}}(x_1, \, x_2) \!-\! \alpha_{\overline{U}}(x_0, \, x_2) \!+\! \alpha_{\overline{U}}(x_0, \, x_1). \end{array}$$

Definition. Let $\{\varphi_{\sigma r}(x)\}$ be a transition function of an n-dimensional topological microbundle ξ over normal paracompact topological space X, then a collection $\{t_{\alpha_{\sigma}(x,y)}\}$, $\alpha_{\sigma}(x,y) \in C^1(U,\mathbf{R}^n)$, is called a pseudoconnection of $\{\varphi_{\sigma r}(x)\}$ if $\{t_{\alpha_{\sigma}}\}$ satisfies

(2)
$$\varphi_{\sigma_{\mathcal{V}}}(x)^{-1}t_{\alpha_{\sigma}(x,y)}\varphi_{\sigma_{\mathcal{V}}}(y)=t_{\alpha_{\mathcal{V}}(x,y)}.$$

According to [1], we call the collection $\{\delta(t_{\alpha_{\overline{U}}})\}$ to be the curvature form of $\{t_{\alpha_{\overline{U}}}\}$.

Definition. We call $\{t_{\alpha_U}\}$ is a flat pseudoconnection if the curvature form $\{\delta(t_{\alpha_U})\}$ of $\{t_{\alpha_U}\}$ is equal to 0.

Definition. $\{\varphi_{\sigma r}(x)\}$ is called a pseudoflat microbundle if $\{\varphi_{\sigma r}(x)\}$ has a flat pseudoconnection.

Example. Let $X=\{U, h_{\sigma}\}$ is a paracompact topological manifold, then setting

 $h_{U,x}(y) = h_{U}(y) - h_{U}(x), g_{UV}(x) = h_{U,x}h_{V,y}^{-1},$

 $\{g_{\sigma \nu}(x)\}\$ is a pseudoflat microbundle with flat pseudoconnection $\{s_{\sigma,x,y}\}\$, where $s_{\sigma,x,y}$ is given by

$$s_{U,x,y} = h_{U,x} h_{U,y}^{-1}$$
.

Lemma 2. If $\{t_{\alpha_U}\}$ is a flat pseudoconnection, then with suitable covering system of X, we can write (3) $t_{\alpha_H(x,y)} = t_{\beta_H(y)} t_{\beta_H(x)}^{-1}.$

Definition. A flat pseudoconnection is called non-degenerate if each β_U given by (3) defines a homeomorphism from U into \mathbb{R}^n .

Note. This definition does not depend on the choice of $\{\beta_n\}$.

Since $h_{\mathcal{U}}$ is a homeomorphism from U into \mathbb{R}^n , the pseudoconnection $\{s_{\mathcal{U},x,y}\}$ of $\{g_{\mathcal{U}\mathcal{V}}(x)\}$ given in the above example is non-degenerate.

- Lemma 3. If X is a paracompact n-dimensional topological manifold, $\{\varphi_{\sigma r}(x)\}$ is a transition function of an n-dimensional topological microbundle ξ and $\{\varphi_{\sigma r}(x)\}$ has a non-degenerate flat pseudoconnection, then ξ is the tangent microbundle of x.
- 2. Transition function comes from the structure. In the rest, we assume that X is a paracompact manifold and fix its dimension n.

Definition. A transition function $\{g'_{\sigma \nu}(x)\}$ of the tangent microbundle of X is called a transition function comes from the (topological) structure of X if we can set

$$g'_{UV}(x) = h'_{U,x}h'_{V,x}^{-1}, h'_{U,x}(y) = h'_{U}(y) - h'_{U}(x),$$

where h'_U is a homeomorphism from U into \mathbb{R}^n .

Definition. If in the above, $\{U, h'_{U}\}$ defines a Γ -structure of X, then we call $\{g'_{UV}(x)\}$ comes from the Γ -structure of X.

In the rest, we assume that the elements of Γ are the homeomorphisms from some open set of \mathbb{R}^n into \mathbb{R}^n . Here n is the (fixed) dimension of X.

Lemma 4. A transition function $\{\varphi_{\sigma v}(x)\}$ of the tangent microbundle of X comes from the structure of X if and only if $\{\varphi_{\sigma v}(x)\}$ has a non-degenerate flat pseudoconnection.

We fix a transition function $\{g_{\sigma v}(x)\} = \{h_{\sigma,x}h_{v,x}^{-1}\}$ of the tangent microbundle τ of X and its non-degenerate flat pseudoconnection $\{s_{\sigma,x,y}\} = \{h_{\sigma,x}h_{\sigma,y}^{-1}\}$. Here $\{U,h_{\sigma}\}$ defines the topological structure of X. Then another transition function of τ is written as $\{\varphi_{\sigma}(x)g_{\sigma v}(x)\varphi_{v}(x)^{-1}\}$, where $\varphi_{\sigma}(x)$ is a homeomorphism from some open set of \mathbf{R}^{n} into \mathbf{R}^{n} and $\varphi_{\sigma}(x)(0)=0$ for any x and y. For this $\{\varphi_{\sigma}(x)\}$, we obtain by lemma 1 and lemma 4,

Theorem 1. $\{\varphi_{\sigma}(x)g_{\sigma\sigma}(x)\varphi_{\sigma}(x)^{-1}\}\$ comes from the structure of

X if and only if $\varphi_{\sigma}(x)$ satisfies

$$d(\varphi_{U}(x)s_{U,x,y}\varphi_{U}(y)^{-1})(a,b)=b-a,$$

for all U, with suitable covering system of X.

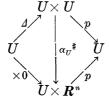
By lemma 1, we can rewrite (4) as

$$(4)' \qquad \varphi_{\mathcal{U}}(x)s_{\mathcal{U},x,y}\varphi_{\mathcal{U}}(y)^{-1} = t_{\alpha_{\mathcal{U}}(x,y)}, \quad \alpha_{\mathcal{U}} \in C^{1}(U, \mathbf{R}^{n}).$$

For this α_v , we define the map $\alpha_v^{\sharp}: U \times U \rightarrow U \times R^n$ by

(5)
$$\alpha_{U}^{\sharp}(x, y) = (x, \alpha_{U}(x, y)).$$

Then we can give a microbundle structure of the diagram $X \xrightarrow{\mathcal{L}} X \times X \xrightarrow{p} X$ by the diagram



Note. The microbundle structure of the diagram $X \xrightarrow{\Delta} X \times X \xrightarrow{p} X$ given by this way, is pseudoflat and the collection $\{t_{\alpha_U}\}$ becomes its (non-degenerate flat) pseudoconnection.

3. Classification of Γ -structures. As in [2], we denote by Γ a pseudogroup consisted by a set of homeomorphisms from some open sets of \mathbb{R}^n into \mathbb{R}^n . We assume that Γ contains all parallel transformations of \mathbb{R}^n , where n is the fixed dimension of X.

In [2], we define an almost Γ -structure on X as the collection $\{\varphi_{\overline{\nu}}(x)\}$ such that

(6)
$$\varphi_{U}(x)g_{UV}(x)\varphi_{V}(x)^{-1} \in \Gamma_{*x},$$

where $\varphi_{\mathcal{U}}(x)$ is a cross-section from U into $H_*(n)_c$. If $\{U'\}$ is a refinement of $\{U\}$, then we identify the almost Γ -structure $\{\varphi_{\mathcal{U}}(x)\}$ and $\{\varphi_{\mathcal{U}}(x) \mid U'\}$.

Lemma 5. There is a refinement $\{U'\}$ of $\{U\}$ and a representation $\{\varphi_{\overline{v}'}(x)\}$ of $\{\varphi_{\overline{v}}(x)\mid U'\}$ such that

$$(6)' \qquad \varphi_{\mathcal{U}'}(x)g_{\mathcal{U}'\mathcal{V}'}(x)\varphi_{\mathcal{V}'}(x)^{-1} \in \Gamma.$$

For the simplicity, we denote $\{U\}$ and $\{\varphi_{U}(x)\}$ instead of $\{U'\}$ and $\{\varphi_{U'}(x)\}$.

Since Γ contains all parallel transformations of \mathbb{R}^n , if the above $\{\varphi_{\Pi}(x)\}$ satisfies (4), then we get

$$(7) \varphi_{\sigma}(x)s_{\sigma,x,y}\varphi_{\sigma}(y)^{-1} \in \Gamma,$$

which is the integrability condition of almost Γ -structures (cf. [2], (11)).

Lemma 6. If the collection $\{\varphi_{\sigma}(x)\}\$ and $\{\psi_{\sigma}(x)\}\$ both satisfy (4), (6)' and the following

$$(8)' \qquad \varphi_{\overline{v}}(x)\psi_{\overline{v}}(x)^{-1} \in \Gamma,$$

then they define same Γ -structure of X.

Proof. We set

$$\varphi_{\scriptscriptstyle U}(x)s_{\scriptscriptstyle U,x,y}\varphi_{\scriptscriptstyle U}(y)^{-1} = t_{\alpha_{\scriptscriptstyle U}(x,y)},$$

$$\psi_{\scriptscriptstyle U}(x)s_{\scriptscriptstyle U,x,y}\psi_{\scriptscriptstyle U}(y)^{-1} = t_{\alpha_{\scriptscriptstyle U'}(x,y)},$$

then since $\{t_{\alpha_{\overline{U}}}\}$ and $\{t_{\alpha_{\overline{U}'}}\}$ are flat pseudoconnections, we can set $\alpha_{\overline{U}}(x, y) = \beta_{\overline{U}}(y) - \beta_{\overline{U}}(x), \ \alpha_{\overline{U}'}(x, y) = \beta_{\overline{U}'}(y) - \beta_{\overline{U}'}(x),$

by using suitable cobering system of X, which is also denoted by $\{U\}$. Since we obtain

$$\begin{array}{l} t_{\beta_{\mathcal{U}}(x)}^{} ^{-1}\!\varphi_{\mathcal{U}}(x) h_{\mathcal{U},x} \!=\! t_{\beta_{\mathcal{U}}(y)}^{} ^{-1}\!\varphi_{\mathcal{U}}(y) h_{\mathcal{U},y}, \\ t_{\beta_{\mathcal{U}'}(x)}^{} ^{-1}\!\psi_{\mathcal{U}}(x) h_{\mathcal{U},x} \!=\! t_{\beta_{\mathcal{U}'}(y)}^{} ^{-1}\!\psi_{\mathcal{U}}(y) h_{\mathcal{U},y}, \end{array}$$

we may denote

$$h_{_{\mathcal{U}}}^{1} = t_{_{eta_{_{\mathcal{U}}}}^{-1}(x)} \varphi_{_{\mathcal{U}}}(x) h_{_{oldsymbol{\mathcal{U}},x}}, \\ h_{_{\mathcal{U}}}^{2} = t_{_{eta_{_{\mathcal{U}}}'(x)}}^{-1} \psi_{_{oldsymbol{\mathcal{U}}}}(x) h_{_{oldsymbol{\mathcal{U}},x}}.$$

Then by (6)', using suitable covering system $\{U, h_{v}^{1}\}$, and $\{U, h_{v}^{2}\}$ define Γ -structures on X and since we have by (8)

$$h_{U}^{1}(h_{U}^{2})^{-1} = t_{\beta_{U}(x)}^{-1} \varphi_{U}(x) \psi_{U}(x)^{-1} t_{\beta_{U}'(x)} \in \Gamma$$
,

the Γ -structures defined by them are equivalent. Therefore we get the lemma.

Since a Γ -structure on X is defined by a collection $\{U, h_{\sigma}'\}$, $h_{\sigma}'h_{\nu}'^{-1} \in \Gamma$, any Γ -structure on X has a transition function comes from the Γ -structure. Therefore we obtain by theorem 1 and lemma 6,

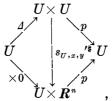
Theorem 2. Two Γ -structures on X are equivalent if and only if $\{\varphi_{v}(x)\}$ and $\{\psi_{v}(x)\}$ satisfy (8) by suitable covering system of X.

Here $\{\varphi_{\overline{\nu}}(x)g_{\overline{\nu}\nu}(x)\varphi_{\overline{\nu}}(x)^{-1}\}$ and $\{\psi_{\overline{\nu}}(x)g_{\overline{\nu}\nu}(x)\psi_{\overline{\nu}}(x)^{-1}\}$ are the transition functions comes from these two Γ -structures.

Note. If Γ_1 is a subpseudogroup of Γ and contains all parallel transformations of R^n , then we get similar theorem about the classification of Γ_1 -structures on a Γ -manifold.

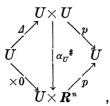
4. Γ -equivalence of pseudoflat Γ -bundle structures of the diagram $X \xrightarrow{\Delta} X \times X \xrightarrow{p} X$.

Definition. Let $\{U, h_{U}'\}$ be a Γ -structure on X, then the microbundle structure of the diagram $\xrightarrow{\Delta} X \times X \xrightarrow{p} X$ given by



 $s_{\sigma,x,y'}=h_{\sigma,x'}h_{\sigma,y'}^{-1}$, is called the associated (pseudoflat) Γ -bundle of the Γ -structure $\{U,\,h_{\sigma}'\}$.

Since a microbundle structure of the diagram $X \xrightarrow{\Delta} X \times X \xrightarrow{p} X$ is given by the diagram



we denote this microbundle structure by $\mathfrak{X}(\{\alpha_{v}\})$. Then we have

Lemma 7. $\mathfrak{X}(\{\alpha_v\})$ is a pseudoflat microbundle if and only if (\mathfrak{G}) $(\delta\alpha_v)(x,y)=0$.

If $\mathfrak{X}(\{\alpha_{\overline{U}}\})$ is a pseudoflat microbundle, then we can set $\alpha_{\overline{U}}(x, y) = \beta_{\overline{U}}(y) - \beta_{\overline{U}}(x)$,

and the transition function of $\mathfrak{X}(\{\alpha_{\sigma}\})$ is given by $\{\beta_{\sigma,x}\beta_{\nu,x}^{-1}\}$. Therefore we get

Lemma 8. $\mathfrak{X}(\{\alpha_v\})$ is a Γ -bundle if and only if the germ of $\beta_{v,x}\beta_{v,x}^{-1}$ at x belongs in Γ_{*x} for all $x \in X$ and $\{U, V\}$.

If $\mathfrak{X}(\{\alpha_v\})$ and $\mathfrak{X}(\{\alpha_v'\})$ are two microbundle structures of the diagram $X \xrightarrow{\Delta} X \times X \xrightarrow{p} X$, then there is a collection of homeomorphisms f_v from $U \times \mathbf{R}^n$ to $U \times \mathbf{R}^n$ such that the diagram

(10)
$$U \times U \xrightarrow{\alpha_{U}^{\sharp}} U \times \mathbf{R}^{n}$$

$$U \times U \xrightarrow{\alpha_{U}'^{\sharp}} U \times \mathbf{R}^{n}$$

$$U \times \mathbf{R}^{n}$$

is commutative for any U. We denote the germ of the map $f_{U,x}: \mathbb{R}^n \longrightarrow \mathbb{R}^n$ defined by $f_{U,x}(a) = f_U(x, a)$ in $H_*(n)_x$ by $\overline{f}_{U,x}$.

Definition. Two (pseudoflat) Γ -bundle structures $\mathfrak{X}(\{\alpha_v\})$ and $\mathfrak{X}(\{\alpha_v'\})$ of the diagram $X \xrightarrow{\Delta} X \times X \xrightarrow{p} X$ is called Γ -equivalent if $\overline{f}_{v,x}$ defined by the diagram (10) belongs in Γ_{*x} for any x and U.

Using this terminology, theorem 2 is rewritten as follows.

Theorem 2'. There is a 1 to 1 correspondence between the set of equivalence classes of Γ -structures on X and the set of Γ -equivalence classes of pseudoflat Γ -bundle structures of the diagram $X \xrightarrow{\Delta} X \times X \xrightarrow{p} X$.

Note. We can obtain similar theorem concerning the classification of Γ_1 -structures on a Γ -manifold.

- 5. A uniqueness condition of Γ_1 -structures of Γ -manifolds. We assume Γ_1 is a subpseudogroup of Γ which contains all parallel transformations of R^n . The map from $H^1(x,\Gamma_{1*o})$ into $H^1(x,\Gamma_{1*o})$ induced from the inclusion of Γ_1 into Γ is denoted by τ^* . We also assume that the pair (Γ,Γ_1) satisfies following condition.
- (U). If we fix a Γ -structure of \mathbb{R}^n , then this Γ -manifold \mathbb{R}^n has at most one Γ_1 -structure.

Lemma 9. If $\varphi_{\overline{\nu}}(x)$ satisfies (4), then we have

(11)
$$\varphi_{\overline{\nu}}(y)(a) = \varphi_{\overline{\nu}}(x)(a + h_{\overline{\nu}}(y) - h_{\overline{\nu}}(x)) \\ -\varphi_{\overline{\nu}}(x)(h_{\overline{\nu}}(y) - h_{\overline{\nu}}(x)), x, y \in U, a \in \mathbb{R}^{n}.$$

Corollary. If $\varphi_{\overline{U}}(x)$ satisfies (4), then its value on U is determined uniquely by its value at a point of U.

Note. By (11), if the values of $\varphi_{\overline{\nu}}$ are diffeomorphisms, then we get

(12)
$$J_0(\varphi_{\overline{U}}(y)) = J(\varphi_{\overline{U}}(x))(h_{\overline{U}}(y) - h_{\overline{U}}(x)).$$

Using theorem 2 and lemma 9, we can prove

Theorem 3. If the pair (Γ, Γ_1) satisfies the condition (U) and the map $\tau^* \colon H^1(X, \Gamma_{1*c}) \longrightarrow H^1(X, \Gamma_{*c})$ is injective for all paracompact manifold X, then a Γ -manifold has at most one Γ_1 -structure.

Corollary. (Cf. [2], [3], [5], [6]). If Γ_1 -structure of \mathbb{R}^n is unique and the homotopy types of Γ_0 and $\Gamma_{1,0}$ (cf. [2], n°4) are same, then a Γ_1 -manifold has at most one Γ_1 -structure. Here the topology of $\Gamma_{1,0}$ is that of induced from Γ_0 , but they need not be the compact open topology.

Note. Denoting \mathcal{R}^n the group of all parallel transformations of \mathbb{R}^n , then \mathcal{R}^n is contained in any Γ_1 and \mathbb{R}^n has an \mathcal{R}^n -structure. Therefore, for any Γ_1 , \mathbb{R}^n becomes a Γ_1 -manifold. But the Γ_1 -structures of \mathbb{R}^n are not unique in general. For example, the complex structures of \mathbb{R}^{2n} are not unique although n=1.

References

- [1] Asada, A.: Connection of topological fibre boundles. Proc. Japan Acad., 42, 13-18 (1966).
- [2] —: Γ -bundles and almost Γ -structures. Proc. Japan Acad., **42**, 467-472 (1966).
- [3] Grauert, H.: On Levi's problem and the imbedding of real analytic manifolds. Ann. Math., 68, 460-472 (1958).
- [4] Milnor, J.: Microbundles, Part I. Topology, 3, 53-80 (1964).
- [5] Shiga, K.: Some aspects of real-analytic manifolds and differentiable manifolds. J. Math. Soc. Japan, 16, 128-142 (1964).
- [6] Whitney, H.: Differentiable manifolds. Ann. Math., 37, 645-680 (1936).