125. On Cauchy's Problem for a Linear System of Partial Differential Equations of First Order

By Minoru Yamamoto
Osaka University
(Comm. by Kinjirô Kunugi, m.J.A., June 13, 1966)

1. Introduction. In this note we shall show the existence and the uniqueness of the solution for a linear system of partial differential equations of the following form (1.1) satisfying the prescribed initial conditions (1.2):

$$
\begin{equation*}
\frac{\partial u_{\mu}}{\partial t}=\sum_{\nu=1}^{k}\left\{\sum_{j=1}^{m} A_{\mu \nu j}(t, x) \frac{\partial u_{\nu}}{\partial x_{j}}+B_{\mu \nu}(t, x) u_{\nu}\right\}+f_{\mu}(t, x) \tag{1.1}
\end{equation*}
$$

$$
\begin{equation*}
u_{\mu}(0, x)=\varphi_{\mu}(x) \quad(\mu=1,2, \cdots, k) \tag{1.2}
\end{equation*}
$$

under some conditions on $A_{\mu \nu j}, B_{\mu \nu}, f_{\mu}$, and φ_{μ} which should be specified later (see [2]). We shall summarize here some notations and definitions. $\quad R^{m}$ denotes the m-dimensional Euclidean space whose elements are denoted by $x=\left(x_{1}, x_{2}, \cdots, x_{m}\right)$, and $z=x+i y=\left(x_{1}+i y_{1}\right.$, $\left.x_{2}+i y_{2}, \cdots, x_{m}+i y_{m}\right)\left(x, y \in R^{m}, i=\sqrt{-1}\right)$ is an element of m-dimensional complex space C^{m}. For some positive $T, D(T)=\{(t, x) ; 0 \leqq t \leqq T$, $\left.x \in R^{m}\right\}$ and $\mathfrak{D}_{\gamma}(T)=\left\{(t, z) ; 0 \leqq t \leqq T, z=x+i y \in C^{m},\left|y_{j}\right|<\gamma, j=1,2, \cdots\right.$, $m\}$ for some positive γ.

A function $f(t, x)$ which is h-time continuously differentiable with respect to (t, x), is denoted by $f(t, x) \in C_{(t, x)}^{h}$, and that $f(t, x)$ which is analytic with respect to x for each $t \in[0, T]$ is denoted by $f(t, x) \in A_{(x)}$.

For any positive constants a and b, a function $f(t, x)$ belonging to $C_{(t, x)}$ on $D(T)$ and satisfying the inequality: $|f(t, x)|=M e^{a e^{b}|x|}$ on $D(T)$ for some positive constant M, is denoted by $f(t, x) \in F(a, b)$.

The method of the proof of the existence of the solution is essentially based on that of Prof. M. Nagumo [2]. The author wishes to express his deepest thanks to professor M. Nagumo for his kind advices and constant encouragement.
2. Assumptions and Main Theorems. Assumptions.
(I) The functions $A_{\mu \nu j}(t, x), B_{\mu \nu}(t, x), f_{\mu}(t, x) \quad(\mu, \nu=1,2, \cdots$, $k ; j=1,2, \cdots, m)$ belong to $C_{(t, x)}$ on $D(T)$.
(II) The functions $A_{\mu \nu j}(t, x), \quad B_{\mu \nu}(t, x), \quad(\mu, \nu=1, \cdots, k ; j=$ $1,2, \cdots, m$) belong to $A_{(x)}$ on $D(T)$ for each $t \in[0, T]$ and can be extended holomorphically with respect to x to the complex domain $\mathfrak{D}_{\gamma}(T)$ on which they are continuous, and on $\mathscr{D}_{\gamma}(T),\left|A_{\mu \nu j}(t, z)\right| \leqq A,\left|B_{\mu \nu}(t, z)\right| \leqq B$ where A and
B are positive constants.
(III) The functions $f_{\mu}(t, x)(\mu=1,2, \cdots, k)$ belong to $A_{(x)}$ on $D(T)$ for each $t \in[0, T]$ and $\varphi_{\mu}(x)$ belong to $A_{(x)}$ on R^{m}. Moreover the functions $f_{\mu}(t, x), \varphi_{\mu}(x)(\mu=1,2, \cdots, k)$ can be extended holomorphically with respect to x to the complex domain $\mathfrak{D}_{\gamma}(T)$, on which they are continuous.
Theorem 1. Under the assumptions (I), (II), and (III), there exist positive numbers T_{1} and $\gamma_{1}\left(T_{1} \leqq T, \gamma_{1}<\gamma\right)$ and a system of solutions $u_{\mu}(t, z)$ of (1.1) with the condition (1.2) which belong to $C^{{ }_{(t, z)}}$ on $\mathfrak{D}_{\gamma_{1}}\left(T_{1}\right)$ and to $A_{(z)}$ on $\mathfrak{D}_{\gamma_{1}}\left(T_{1}\right)$ for each $t \in\left[0, T_{1}\right]$.

Theorem 2. Under the assumptions (I) and (II), if $u_{\mu}(t, x)$ and $v_{\mu}(t, x)(\mu=1,2, \cdots, k)$ are continuously differentiable solutions of (1.1) on $D(T)$ satisfying the same initial conditions (1.2) and are contained in $F(a, b)$ for some constants a and b, then $u_{\mu}(t, x)=$ $v_{\mu}(t, x)(\mu=1,2, \cdots, k)$ on $D(T)$.
3. Preliminary lemmas. Lemma 1. Let $f\left(z_{1}, z_{2}, \cdots, z_{m}\right)$ be a holomorphic function in $G(\delta)=\left\{z=x+i y ; x_{j}, y_{j} \in R^{1},\left|y_{j}\right|<\delta: j=\right.$ $1,2, \cdots, m\}$ which satisfies, for some positive constants M, α,
(3.1) $\quad\left|f\left(x_{1}+i y_{1}, x_{2}+i y_{2}, \cdots, x_{m}+i y_{m}\right)\right| \leqq M \rho^{-\alpha}$ where $\rho=\delta-\operatorname{Max}_{j}\left\{\left|y_{j}\right|\right\}$.
Then in $G(\delta)$ the following inequalities hold for all $j:(j=1,2, \cdots$, m).

$$
\begin{equation*}
\left|\frac{\partial f}{\partial x_{j}}\left(x_{1}+i y_{1}, x_{2}+i y_{2}, \cdots, x_{m}+i y_{m}\right)\right| \leqq \frac{(1+\alpha)^{1+\alpha}}{\alpha^{\alpha}} M \rho^{-\alpha-1} \tag{3.2}
\end{equation*}
$$

Proof, For arbitrary $z^{0} \in G(\delta)$ and any fixed j we take a circle C_{j} in the z_{j}-plane with radius $\frac{\rho}{1+\alpha}$ and with center z_{j}^{0}, where $\rho=$ $\delta-\operatorname{Max}_{\nu}\left\{\left|\Im_{\mathfrak{m}} z_{\nu}^{0}\right|\right\}$. If $z_{j} \in C_{j}$, then $\delta-\left|\Im_{\mathfrak{m}} z_{j}\right| \geqq \rho-\frac{\rho}{1+\alpha}$, and hence $|f(z)| \leqq(1+\alpha)^{\alpha} \alpha^{-\alpha} M \rho^{-\alpha}$. Therefore by Cauchy's integral formula we get the conclusion.
Q.E.D.

In the proof of Theorem 1 and Theorem 2, we may assume for the initial values $\varphi_{\mu}(x)=0$, and then equations (1.1) with (1.2) are equivalent to the following functional equations:

$$
\begin{equation*}
u_{\mu}(t, x)=\Phi_{\mu}[u(t, x)](\mu=1,2, \cdots, k), \tag{3.3}
\end{equation*}
$$

where

$$
\begin{aligned}
& \Phi_{\mu}[u]= \\
& \quad \sum_{\nu=1}^{k}\left\{\sum_{j=1}^{m} \int_{0}^{t} A_{\mu \nu j}(\tau, x) \frac{\partial u_{\nu}}{\partial x_{j}}(\tau, x) d \tau+\int_{0}^{t} B_{\mu_{\nu}}(\tau, x) u_{\nu}(\tau, x) d \tau\right\}+\int_{0}^{t} f_{\mu}(\tau, x) d \tau .
\end{aligned}
$$

Therefore to prove the Theorem 1 and Theorem 2, it is sufficient to prove the existence and the uniqueness of the solutions of (3.3).

Lemma 2. Under the assumptions (I), (II), and (III), for arbitrary $x^{0} \in R^{m}$ there exists a solution $u(t, z) \in C_{(t, z)}^{1} \cap A_{(z)}$ in any
closed subdomain of $\Delta\left(x^{0}\right)$, where

$$
\Delta\left(x^{0}\right)=\left\{(t, x+i y) ; 0 \leqq t \leqq T_{1},\left|x_{j}-x_{j}^{0}\right|<R_{1},\left|y_{j}\right|<R_{1}-L_{1} t\right\}
$$

$$
0<R_{1}<\operatorname{Min}\left\{1, \gamma,\left(\frac{1+\alpha}{\alpha}\right)^{1+\alpha}(1-\alpha) m A / B\right\}, \quad L_{1}=\frac{m k A}{\kappa}\left(\frac{1+\alpha}{\alpha}\right)^{1+\alpha}
$$

for any fixed α and κ such that $0<\alpha<1,0<\kappa<1$, and

$$
T_{1}=\operatorname{Min}\left\{T, R_{1} / L_{1}\right\}
$$

Proof. It is obvious that $g_{\mu}(t, z) \in C_{(t, z)}^{1} \cap A_{(z)}$ on $\mathfrak{D}_{\gamma}(T)$ implies $\Phi_{\mu}[g(t, z)] \in C_{(t, z)}^{1} \cap A_{(z)}$ on $\mathfrak{D}_{\gamma}(T)$. Now consider the sequence of functions $u_{\mu}^{(n)}(t, z)$ defined inductively as follows:

$$
\begin{align*}
& u_{\mu}^{(0)}(t, z)=0 \tag{3.4}\\
& u_{\mu}^{(n+1)}(t, z)=\Phi_{\mu}\left[u^{(n)}(t, z)\right], \quad n=0,1,2, \cdots .
\end{align*}
$$

Then from $u_{\mu}^{(0)}(t, z) \in C_{(t, z)}^{1} \cap A_{(z)}$ on $\mathfrak{D}_{\gamma}(T)$, it follows that $u_{\mu}^{(n+1)}(t, z) \in$ $C_{(t, z)} \cap A_{(z)}$ on $\mathscr{D}_{\gamma}(T)$ for all n.

Let $\Psi_{\mu}[u]=\Phi_{\mu}[u]-\int_{0}^{t} f_{\mu}(\tau, z) d \tau$, then

$$
u_{\mu}^{(h+1)}-u_{\mu}^{(h)}=\Psi_{\mu}\left[u^{(h)}-u^{(h-1)}\right] .
$$

To demonstrate the convergence of the sequence $\left\{u_{\mu}^{(n)}(t, z)\right\}$, we consider the series:

$$
\begin{aligned}
u_{\mu}^{(n+1)}(t, z) & =\sum_{h=1}^{n}\left\{u_{\mu}^{(h+1)}(t, z)-u_{\mu}^{(h)}(t, z)\right\}+u_{\mu}^{(1)}(t, z) \\
& =\sum_{h=1}^{n} \Psi_{\mu}\left[u^{(h)}-u^{(h-1)}\right]+u_{\mu}^{(1)}(t, z)
\end{aligned}
$$

On the other hand, it is obvious that for given $\alpha(0<\alpha<1)$ there exists a positive constant M such that

$$
\left|u_{\mu}^{(1)}-u_{\mu}^{(0)}\right| \leqq \int_{0}^{t}\left|f_{\mu}(\tau, z)\right| d \tau \leqq M \quad \text { in } \quad \Delta\left(x^{0}\right)
$$

where $\rho=\left(R_{1}-L_{1} t-\operatorname{Max}\left|\Im_{m} z_{j}\right|\right)$, and hence we get

$$
\int_{0}^{t}\left|u_{\mu}^{(1)}-u_{\mu}^{(0)}\right| d \tau \leqq \frac{M}{(1-\alpha) L_{1}} R_{1}^{1-\alpha} \quad \text { in } \quad \Delta\left(x^{0}\right)
$$

and from Lemma 1

$$
\left|\int_{0}^{t} \frac{\partial\left(u_{\nu}^{(1)}-u_{\nu}^{(0)}\right)}{\partial x_{j}} d \tau\right| \leqq\left(\frac{1+\alpha}{\alpha}\right)^{1+\alpha} \cdot \frac{M}{L_{1}}\left(\rho^{-\alpha}-R_{1}^{-\alpha}\right) .
$$

From the assumptions in Lemma we get the following:

$$
\left|u_{\mu}^{(2)}-u_{\mu}^{(1)}\right| \leqq \kappa M \rho^{-\alpha} \quad \text { in } \quad \Delta\left(x^{0}\right) .
$$

Thus we obtain inductively for all natural numbers n

$$
\begin{equation*}
\left|u_{\mu}^{(n+1)}-u_{\mu}^{(n)}\right| \leqq \kappa^{n} M \rho^{-\alpha} \quad \text { in } \quad \Delta\left(x^{0}\right) \tag{3.5}
\end{equation*}
$$

Therefore from (3.5) we obtain a function $u_{\mu}(t, z)$ which is the uniform limit function of $u_{\mu}^{(n)}(t, z)$ on any closed subdomain of $\Delta\left(x^{0}\right)$. This shows that $u_{\mu}(t, z) \in C_{(t, z)}^{1} \cap A_{(z)}$ in $\Delta\left(x^{0}\right)$ and $u_{\mu}(t, z)=\Phi_{\mu}[u(t, z)]$ in $\Delta\left(x^{0}\right)$.
Q.E.D.

Remark 1. From the above proof, we see that the solutions satisfy

$$
\begin{equation*}
\left|u_{\mu}(t, z)\right| \leqq \frac{M}{1-\kappa} \rho^{-\alpha} \quad \text { in } \quad \Delta\left(x^{0}\right), \mu=1,2, \cdots, k \tag{3.6}
\end{equation*}
$$

where $M=\operatorname{Sup}_{(t, z) \in \mathcal{A}\left(x^{0}\right)}\left\{\rho^{\alpha} T_{1}\left|f_{\mu}(t, z)\right|\right\}$. We shall denote these solutions of (3.3) in $\Delta\left(x^{0}\right)$ constructed above by $u_{\mu}\left(t, z, x^{0}\right)$.
4. Proof of Theorems. Proof of Theorem 1. From the above Lemma 2, $u_{\mu}\left(t, z, x_{0}\right) \in C_{(t, z)}^{1} \cap A_{(z)}$ in $\Delta\left(x^{0}\right)$. For arbitrary $z \in$ $\Delta\left(x^{0}\right) \cap \Delta\left(x^{1}\right)$, considering the function $v_{\mu}(t, z)=u_{\mu}\left(t, z, x^{0}\right)-u_{\mu}\left(t, z, x^{1}\right)$, we have $v_{\mu}(0, z)=0$ and $v_{\mu}(t, z)=\Psi_{\mu}[v(t, z)]$. If \widetilde{R} be a such positive number that
$\Delta^{\prime}=\left\{(t, z) ; 0 \leqq t \leqq T_{2},\left|x_{j}-\frac{x_{j}^{0}+x_{j}^{1}}{2}\right|<\widetilde{R},\left|y_{j}\right|<\widetilde{R}-L_{1} t\right\} \subset \Delta\left(x^{0}\right) \cap \Delta\left(x^{1}\right)$, and $\tilde{\rho}=\left(\widetilde{R}-L_{1} t-\operatorname{Max}_{j}\left|\Im_{\mathfrak{m}} z_{j}\right|\right), \tilde{M}=\sup _{\substack{\left(t, z, \in \Lambda^{\prime}, \mu=1, \ldots, k\right.}}\left\{\tilde{\rho}^{\alpha}\left|v_{\mu}(t, z)\right|\right\}$, then we have the following inequalities:

$$
\left|v_{\mu}(t, z)\right|=\left|\Psi_{\mu}[v(t, z)]\right| \leqq \kappa \tilde{M} \tilde{\rho}^{-\alpha} \quad \text { in } \quad \Delta^{\prime}
$$

as in the above proof of Lemma 2.
These facts show that $\tilde{M} \tilde{\rho}^{-\alpha} \leqq \kappa \tilde{M} \tilde{\rho}^{-\alpha}(0<\kappa<1)$, that is to say $v_{\mu}(t, z)=0$ in $\Delta^{\prime}(\mu=1, \cdots, k)$. Hence we have by analytic continuation with respect to z, the solution $u_{\mu}(t, z)$ of (3.3) in $\mathfrak{D}_{\gamma_{1}}\left(T_{1}\right)$.

Remark 2. The Remark 1 and the Theorem 1 show that if $\left|f_{\mu}(t, z)\right| \leqq M \exp \left(-a e^{b|x|}\right)$ on $\mathfrak{D}_{\gamma}(T)$ for some positive constants a, b, and M, then for arbitrary $a^{\prime}(<\alpha)$ there exist M^{\prime} and T_{1} such that the solutions of (3.3) satisfy

$$
\left|u_{\mu}(t, x)\right| \leqq M^{\prime} \exp \left(-a^{\prime} e^{b|x|}\right) \quad \text { on } D\left(T_{1}\right)
$$

Proof of Theorem 2. Let

$$
L_{\mu}[u]=\frac{\partial u_{\mu}}{\partial t}-\sum_{\nu=1}^{k}\left\{\sum_{j=1}^{m} A_{\mu \nu j}(t, x) \frac{\partial u_{\nu}}{\partial x_{j}}+B_{\mu \nu}(t, x) u_{\nu}\right\}
$$

and for every $\sigma,(\sigma=1,2, \cdots, k)$

$$
\begin{aligned}
\widetilde{L}_{\mu}^{\sigma}[u]= & -\frac{\partial u_{\mu}}{\partial t}+\sum_{\nu=1}^{k}\left\{\sum_{j=1}^{m} \frac{\partial}{\partial x_{j}}\left[A_{\nu \mu j}(t, x) u_{\nu}\right]-B_{\nu \mu}(t, x) u_{\nu}\right\} \\
& -e^{-i x \cdot \xi} \cdot \exp \left\{-a^{\prime} \cosh (b|x|)\right\} \cdot \delta_{\mu \alpha}, \mu=1,2, \cdots, k
\end{aligned}
$$

where a^{\prime} is some positive constant such that for any given $\varepsilon>0$, $(a+\varepsilon) e^{b|x|} \leqq a^{\prime} \cosh \{b|z|\}=\sum_{n=0}^{\infty} \frac{\left(b^{2} \sum_{\nu=1}^{k} z_{\nu}^{2}\right)^{n}}{(2 n)!}$ on $\mathfrak{D}_{\gamma}(T)$ for sufficiently small positive γ, and $\delta_{\mu \sigma}$ is the Kronecker's delta.

The equations $\tilde{L}_{\mu}^{\sigma}[u]=0$ are of similar forms as equations considered in the Theorem 1, and considering t in negative direction in the Theorem 1, we can conclude that there exist a positive $T_{0}\left(\leqq T_{1}\right)$ and the system of solutions $w_{\mu}(t, x)$ of $\widetilde{L}_{\mu}^{\sigma}[u]=0$ in $D(T)$ with the initial condition $w_{\mu}(T, x)=0$ for any $T \in\left[0, T_{0}\right]$. Moreover from the Remark 1, we obtain the following inequalities:

$$
\begin{equation*}
\left|w_{\mu}(t, x)\right| \leqq M^{\prime} \exp \left\{-\left(a+\frac{\varepsilon}{2}\right) e^{b|x|}\right\} \quad \text { on } \quad D(T)\left(0<T \leqq T_{0}\right) \tag{4.1}
\end{equation*}
$$

for some positive constant M^{\prime} depending on ε, if we choose the
constant α^{\prime} appropriately for given a.
If u and v are the solutions of (1.1) with the condition (1.2), which belong to $F(a, b)$ for some positive a and b, then the function $(u-v)$ satisfies $L_{\mu}[u-v]=0,\left(u_{\mu}-v_{\mu}\right)(0, x)=0$ and
(4.2) $\left|u_{\mu}(t, x)-v_{\mu}(t, x)\right| \leqq K \exp \left(a e^{b|x|}\right) \quad$ on $\quad D(T)(\mu=1,2, \cdots, k)$ for some positive constant K and for any $T \in\left[0, T_{0}\right]$. Since

$$
\begin{aligned}
& \sum_{\mu=1}^{k} \int_{D_{D(T)}} \int\left\{w_{\mu} L_{\mu}[u-v]-\left(u_{\mu}-v_{\mu}\right) \widetilde{L}_{\mu}^{\sigma}[w]\right\} d x d t=0, \\
& \quad \int_{0}^{t} d t \cdot \int_{R^{m}} e^{-i x \cdot \xi}\left[\left(u_{\sigma}-v_{\sigma}\right) \exp \left\{-a^{\prime} \cosh (b|x|)\right\}\right] d x=0
\end{aligned}
$$

for any ξ in R^{m}. Thus for any $\xi \in R^{m}$ and $t \in\left[0, T_{0}\right]$,

$$
\begin{equation*}
\int_{R^{m}} e^{-i x \cdot s}\left[\left(u_{\sigma}-v_{\sigma}\right) \exp \left\{-a^{\prime} \cdot \cosh (b|x|)\right\}\right] d x=0 . \tag{4.3}
\end{equation*}
$$

Since $\left|\left(u_{\sigma}-v_{\sigma}\right) \exp \left\{-\alpha^{\prime} \cosh (b|x|)\right\}\right| \leqq \exp \left\{-\frac{\varepsilon}{2} e^{b|x|}\right\}$, (4,3) shows that the Fourier transform of the integrable continuous function $\left(u_{\sigma}-v_{\sigma}\right) \exp \left\{-a^{\prime} \cosh (b|x|)\right\} \quad$ vanishes identically on R^{m} for each $t \in\left[0, T_{0}\right]$. And since $\exp \left\{-a^{\prime} \cosh (b|x|)\right\} \neq 0$ in $R^{m}, u_{o}(t, x)-v_{\sigma}(t, x)=$ 0 on $D\left(T_{0}\right)$.

Now if there exists a $T^{\prime} \in[0, T]$ for which holds $u_{\mu}\left(T^{\prime}, x\right)$ $v_{\mu}\left(T^{\prime}, x\right) \neq 0$ in R^{m} for some μ, let T_{2} be the infimum of such T^{\prime}, then $u_{\mu}\left(T^{\prime}, x\right)=v_{\mu}\left(T^{\prime}, x\right)$ on $D\left(T_{2}\right)$. In this case taking T_{2}^{\prime}, T_{3} such that $T_{3}-T_{2} \leqq T_{0}$ and $T_{2}^{\prime}<T_{2}<T_{3}$, repeating the above argument for the interval $\left[T_{2}^{\prime}, T_{3}\right]$, we get $u_{\mu}(t, x)=v_{\mu}(t, x)$ for $(t, x) \in\left\{D\left(T_{3}\right)\right.$ $\left.D\left(T_{2}^{\prime}\right)\right\}=\left\{(t, x) ; T_{2}^{\prime}<t \leqq T_{3}, x \in R^{m}\right\}$. This constradicts the assumption of the existence of T^{\prime} given above, and we get the conclusion

$$
u_{\mu}(t, x)=v_{\mu}(t, x) \quad \text { in } D(T) \text { for every } \mu .
$$

Q.E.D.

References

[1] H. Kumano-go and K. Isé: On the characteristic Cauchy problem for partial differential equations. Osaka J. Math., 2, 205-216 (1965).
[2] M. Nagumo: Über das Anfangswertproblem Partieller Differentialgleichungen. Japanese Jour. of Math., 18, 41-47 (1942).

