# 169. Some Three Valued Logics and its Algebraic Representations 

By Kiyoshi Iséki
(Comm. by Kinjirô Kunugi, m.J.A., Sept. 12, 1966)
In his papers [3], [4], A. Rose formulated a three valued logic given by the following matrices:

| $x$ | 0 | 1 | 2 |
| :---: | :---: | :---: | :---: |
| $N x$ | 2 | 1 | 0 |


| $\vee$ | 0 | 1 | 2 |
| :---: | :---: | :---: | :---: |
| 0 | 0 | 0 | 0 |
| 1 | 0 | 0 | 1 |
| 2 | 0 | 1 | 2 |


| $\wedge$ | 0 | 1 | 2 |
| :---: | :--- | :--- | :--- |
| 0 | 0 | 1 | 2 |
| 1 | 1 | 2 | 2 |
| 2 | 2 | 2 | 2 |

and for the implication $x \rightarrow y$,

| $\rightarrow$ | 0 | 1 | 2 |
| :---: | :---: | :---: | :---: |
| 0 | 0 | 1 | 2 |
| 1 | 0 | 0 | 1 |
| 2 | 0 | 0 | 0. |

Where 0 is the designated value, and from $N 1=1$, 1 is the center of this calculus.

Let $\{0,1,2\}$ be a ring with characteristic 3 (see Gr. C. Moisil [1], [2]). Then these primitive functors are algebraically denoted by

$$
\begin{aligned}
N x & =2(x+1), \\
x \vee y & =x^{2} y^{2}+x y(x+y), \\
x \wedge y & =2 x^{2} y^{2}+2 x y(x+y)+(x+y),
\end{aligned}
$$

and

$$
x \rightarrow y=x^{2} y^{2}+x y(x+y)+2 x y+y .
$$

Further, two functors $\mu$ and $\nu$ defined by

| $x$ | 0 | 1 | 2 |
| :---: | :---: | :---: | :---: |
| $\mu x$ | 0 | 2 | 2 |
| $\nu x$ | 0 | 0 | 2 |

are represented by $2 x^{2}$ and $x^{2}+2 x$ respectively. These results are obtained by a similar way of Gr. C. Moisil [1].
B. Sobociński introduced an interesting partial system of three valued calculus of propositions in his paper [5]. In his calculus, the negation and the implication are defined by the following matrices:
$x$

$N x$$|$| 0 | 1 | 2 |
| :--- | :--- | :--- |
| 1 | 0 | 2 |


| $\rightarrow$ | 0 | 1 | 2 |
| :---: | :---: | :---: | :---: |
| 0 | 1 | 1 | 1 |
| 1 | 0 | 1 | 0 |
| 2 | 0 | 1 | 2 |

These primitive functors are represented by a ring of characteristic 3 mentioned above as follows:

$$
\begin{aligned}
N x & =2 x+1 \\
x \rightarrow y & =2 x^{2} y+2 x y^{2}+2 x^{2}+1
\end{aligned}
$$

If we define two functors $\wedge$ and $\vee$ by the usual way, then these functors are given by the following matrices:

| $\wedge$ | 0 | 1 | 2 |
| :---: | :--- | :--- | :--- |
| 0 | 0 | 0 | 0 |
| 1 | 0 | 1 | 1 |
| 2 | 0 | 1 | 2 |


| $\vee$ | 0 | 1 | 2 |
| :--- | :--- | :--- | :--- |
| 0 | 0 | 1 | 0 |
| 1 | 1 | 1 | 1 |
| 2 | 0 | 1 | 2 |

Therefore we have these algebraic expressions as follows:

$$
\begin{aligned}
& x \wedge y=2 x^{2} y^{2}+2 x y(x+y)+x y \\
& x \vee y=x^{2} y^{2}+2\left(x^{2}+y^{2}\right)+x y+2(x+y)
\end{aligned}
$$

## References

[1] Gr. C. Moisil: Sur les anneaux de caractéristique 2 ou 3 et leurs applications. Bull. de l'Ecole Poly. de Bucarest, 12, 1-25 (1941).
[2] -: Teoria Algebrica a Mecanismelor Automate. Bucarest (1959).
[3] A. Rose: An axiom system for three valued logic. Methodos, 233-239 (1951).
[4] -: Axiom systems for three valued logic. Jour. of London Math. Soc., 26, 50-58 (1951).
[5] B. Sobociński: Axiomatization of a partial system of three valued calculus of propositions. Jour. of Computing systems, 1, 23-55 (1952).

