169. Some Three Valued Logics and its Algebraic Representations

By Kiyoshi Iséki

(Comm. by Kinjirô KUNUGI, M.J.A., Sept. 12, 1966)

In his papers [3], [4], A. Rose formulated a three valued logic given by the following matrices:

		x	0	1	2			
		Nx	2	1	0			
0	0	0			0	0	1	2
0	0	1			1	1	2	2
0	1	2			2	2	2	2
		0 1		Nx 2 0 1 2	$\begin{array}{c cc} \hline Nx & 2 & 1 \\ \hline 0 & 1 & 2 \end{array}$		$\begin{array}{c cccc} \hline Nx & 2 & 1 & 0 \\ \hline 0 & 1 & 2 & & \land & 0 \\ \hline \end{array}$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$

and for the implication $x \rightarrow y$,

\rightarrow	0	1	2
0	0	1	2
1	0	0	1
2	0	0	0

Where 0 is the designated value, and from N1=1, 1 is the center of this calculus.

Let $\{0, 1, 2\}$ be a ring with characteristic 3 (see Gr. C. Moisil [1], [2]). Then these primitive functors are algebraically denoted by Nx=2(x+1)

$$x \lor y = x^2 y^2 + xy(x+y), \ x \land y = 2x^2 y^2 + 2xy(x+y) + (x+y),$$

and

 $x \rightarrow y = x^2 y^2 + xy(x+y) + 2xy + y.$

Further, two functors μ and ν defined by

x	0	1	2
μx	0	2	2
$\boldsymbol{\nu} x$	0	0	2

are represented by $2x^2$ and x^2+2x respectively. These results are obtained by a similar way of Gr. C. Moisil [1].

B. Sobociński introduced an interesting partial system of three valued calculus of propositions in his paper [5]. In his calculus, the negation and the implication are defined by the following matrices:

x	0	1	2	\rightarrow	0	1	2
Nx	1	0	2	0	1 0 0	1	1
				1	0	1	0
				2	0	1	2

These primitive functors are represented by a ring of characteristic 3 mentioned above as follows:

$$Nx = 2x + 1,$$

 $x \rightarrow y = 2x^2y + 2xy^2 + 2x^2 + 1$

If we define two functors \land and \lor by the usual way, then these functors are given by the following matrices:

\wedge	0	1	2	\vee	0	1	2
0	0 0 0	0	0		0		
1	0	1	1	1	1 0	1	1
2	0	1	2	2	0	1	2

Therefore we have these algebraic expressions as follows:

$$x \wedge y = 2x^2y^2 + 2xy(x+y) + xy, \ x \lor y = x^2y^2 + 2(x^2+y^2) + xy + 2(x+y).$$

References

- [1] Gr. C. Moisil: Sur les anneaux de caractéristique 2 ou 3 et leurs applications. Bull. de l'Ecole Poly. de Bucarest, 12, 1-25 (1941).
- [2] ——: Teoria Algebrica a Mecanismelor Automate. Bucarest (1959).
- [3] A. Rose: An axiom system for three valued logic. Methodos, 233-239 (1951).
- [4] —: Axiom systems for three valued logic. Jour. of London Math. Soc., 26, 50-58 (1951).
- [5] B. Sobociński: Axiomatization of a partial system of three valued calculus of propositions. Jour. of Computing systems, 1, 23-55 (1952).