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The classical theorem of P. G. Lejeune Dirichlet on prime
numbers in arithmetic progressions states that, if k and 1 are two
integers with k>__ 1, (k,/)--1, then there exist infinitely many primes
p =-1 (mod k). Several elementary proofs are known of this monumental
result, with or without the use of the Dirichlet characters to modulus
k (cf. e.g. 3; Chap. 9, 8, 5, 6, 7, [_8), and some of them
rest upon the celebrated inequality due to A. Selberg 5"
(1) logp+ logplogq- 2 ,xlogx+O(x)

(k)
Pl (rood k) pql (rood k)

as x, where (k) is the Euler totient function.
Our main interest in the present note is to give another proof

of the theorem of Dirichlet on the basis of the inequality (1) by
showing that

(2) logp>clogx (x)
pl (rood k)

with some constant c>0 (depending on k) implies that
logp 1 logx (x)

pl (mod k)

for any l relatively prime to k.
It should be noted that we can prove the inequality (2) by an

elementary argument (cf. 7, I). As a matter of fact, a slightly
weaker condition than (2)will suffice for our purpose. Indeed, one may
replace, on the right-hand side of (2), c log x by (log log x), a being an
arbitrary but fixed real number > 1.

i. Let k be a fixed integer 1 and l be any integer with (k, 1)- 1.
We use partial summation to get from (1)

3 log+ log p log q
p q pq

pl (rood k) pql (rood k)

1 logx+ O(log x).
()

If we put x-e and for (h, k)-I s(h)--oa(h) (m--0, 1, 2,...),
where

E (, 0, 2,...),
ph (mod k)
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then it follows from (3) that

4 ,a(1)+ a(h)s_(t) 1 n2+ O(n)

as n--c, where ](,)= indicates the summation over a complete set
of residues h (mod k) prime to k and, for (h, k)-l, h is an integer
uniquely determined (mod k) by the condition hh=_ 1 (mod k).

We define for (h, k)-I and s>0 the functions f(s) by

fh(s)- a(h)e-’:
--0

the series on the right is absolutely convergent for s>0. Noticing
that (1--e-’)--s-+O(1) for s>0, we then deduce from the relation
(4) that

(5) d f(s)- , f(s)f(s)- 2 1 (1)ds (,=1 (k) s
/ 0 -S-

for s0.
Now, let Z denote a Dirichlet character to modulus k and put

F(s, Z)- , z(h)f(s).
(h,k)--1

Since we have ,(,=z(h)=(k) (:=:0), =0 (::/=0), Z0 being the
principal character (mod k), we find from (5) that for s 0

2e(Z) (1)d F(s X)--(F(s Z)) +0
ds s -where e(2:)- 1 (2-2:0), -0 (2 :/: 2:0).

2. In order to determine the asymptotic behaviour of the
functions F(s, ) for s 0 we require the following two Lemmas. *)

Let us set y--F(s, ).
Lemma 1. The equation

dy y 2 0(1)ds s-z+ -implies that either
1 (s 0)
8

2y- + (s 0).
8

This result is due to J. Korevaar [4].
Lemma 2. The equation

ds

v-O(log )
implies that either

*) It is possible to avoid the use of the result in Lemma 1 by directly
appealing to the fact that Y.$(log p)/p=log x+O(1).
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or

y- +o() (s 0).
8

We postpone the proof of Lemma 2 until the end of this note.
It is not difficult to see that the second possibilities in Lemmas

1 and 2 cannot occur for any of our functions y-F(s, ;), if one
observes that for (h, k)--1

1 Z()F(s Z)f(s)
(k) x(mod k)

and that the assumption (2) implies that f(s)>c/s (s O) with some
constant c>O. We thus obtain for (k,/)-1

(6) f(s)-1 l + O(log-) (s O).
(k) s

This relation (6) already proves the theorem of Dirichlet men-
tioned at the beginning of this note. For, if there were some
integers k, 1 with k>__l, (k,/)-1, for which only a finite number of
primes p=l (modk) exist, then the function f(s)-a(1)e would
remain bounded as s 0, which, however, is impossible in view of
(6).

Now, by a well-known Tauberian theorem for power series (cf.
[2; Theorem 96 or 98), we readily conclude from (6) that for
(, )-

s(1).)n (n-oo)

or

] log p 1 log x (x--c),
p 4(])

P---- (mod k)

which was the result to be proved.
We note that a slightly more precise result than the above, i.e.

the relation
log p =__1log x+ 0(1)

pl (mod k)

as x, can in fact be obtained (cf. [3; Chap. 9, 8).
3. It now remains to prove Lemma 2. Consider the differential

equation

( 7 ) g-y-R(s),
ds

where R(s)-O(s-) (s 0). If we put
v-v(t)- tu(t-), t- s-,

after the substitution
i duy u=u(s),
u ds
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then we have

y- -t+ tO(t) with C(t)-

and the equation (7) becomes

(s) db

where

v dr’

dt
./A(t)v-O,

1R 1 0 1

By integrating twice between to and t, where to is a fixed
positive real number, we obtain from (8)

(9) dv Idt--c-- A(v)v(v)dv
to

and

(10) V-Co+Ct- (t--v)A(v)v(v)dv
to

with some constants Co and c.
It is not difficult to show that v(t)-O(t) (too) and the limit

limdV-c exists (cf. [1; Chap. 6, Theorem 5 and its proofS). We
t-. dt

dVdt -c-- ItoA(V)v(r)dv+ It A(v)v(v)dv
(ii) =c+O(t-) (t--oo),
and, using (11) in (10),

V--Co+ ct-- t A(v)v()d+ A()v(v)d
to

(12) =ct+ O(log t) (t-oo).
If c4= 0 then we have

C(t)=__t d_if_v= ct+O(1) .=l+o(.log t_) (t--.oo),
v dt ct+O(logt) t

so that y-O(log t) (t---,oo) or

y--O(log-}) (sl0).

If c--0 then it follows from (12) that v-O(logt)(t---.oo) and
the integral

I:vA()v(r)lv c

converges. Hence we have

have, therefore,
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v-=Co/ t A(v)v(v)dv +c’-- rA(v)v(r)dv

which yields via (10)

V=Co+C’+O( 1 ) (t)

Noticing that

we obtain

v-- t dv --Co/ vA(r)v(v)dv
dt o

=Co+c’+O(t-) (t-),

t d--v-v o(-) (t--c
dt

Thus, if c--0 and Co+C’:/:O, then

C(t)- O(t-) =0( 1 )Co+C’+o(t-9 --i- (t-),

so that y---t+O(1) (tc) or

--+o() (s 0).
8

If c-0 and Co+C’-O, then v-v(t)-O for all t>0. For, since
there are constants A>0 and K>0 such that we have, for t>=to,
A(t) I<-At-, and Iv(t)IKt-, we see from (10) with C-Co+C’-O,

i.e. from the relation

v(t)- t A(v)v()dv-- IvA(v)v()dv,
that

(t>=to).

Thus we have, by induction,

(v(t) < KA[-[ 1
3"+2 1)1+j+l t

for every integral m>__0. Since

ii i + i <
]+2 ]+1 (re+l)!

and t0>0 is arbitrary, this proves the assertion.
Our proof of Lemma 2 is now complete.

(t>=to)

(m>=O)

Eli

[2]
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