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Let SU(p, 1) be the matrix group defined by
g e GL(p+ 1, c), det g= 1, tjg= j, 1 )

where J=Ii landlisthepunitmatrix1
In this note, we intend to classify all completely) (or more

generally, quasi-simple)) irreducible representations of this group
and to obtain explicite formulae of their characters.

1. Sketch of classification of irreducible representations. It
is convenient to handle, in place of SU(p, 1), the group G which is
defined by *yJg=J (det g= 1 is not assumed). The results on SU(p, 1)
are easily deduced from the results on G.

A maximal compact subgroup U of G is the totality of matrices

of the form /u 2/’ u e U(p)and 121-1. Every completely (or quasi-

simple) irreducible representation, if it is restricted to U, contains
any irreducible representation of U at most onee [2, _6], [4, a, II].

To every quasi-simple irredueible representation, there exists a
completely irreducible representation which is infinitesimally equiva-
lent) to it. In the following, we say irreducible in place of quasi-
simple irreducible for simplicity. There corresponds to every
infinitesimally equivalent class of irreducible representations of G an
algebraieally equivalent class of algebraically irreducible representa-
tions of the Lie algebra (R) of G _2], [4, a, I]. Therefore the clas-
sificatio of all infinitesimally equivalent elasses of irredueible
representations of G is reduced to the classification of algebraically
irreducible representations of (R) whieh is IX-simple (1I is the Lie
algebra of U), that is, any (finite dimensional) irreducible re-
presentation of is eontained in it at most once.

Then we are lead to commutation relations between some dif-
ference operators in a veetor spaee. The situation is quite similar to
the ease of the Lorentz group of n-th order [5, a, b], [6]. Using
the results in [1], we obtain a system of differenee equations. We
can obtain all solutions of the difference equations, which satisfy
some conditions expressing irredueibility of representations of (R).

1) See [2]. 2) See 4, a, I.
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This completes the classification.
Another method is with less calculations. We can infer typical

solutions of the difference equations from the results 1 on finite
dimensional representations of (R). Thus we obtain typical representa-
tions of (, not necessarily irreducible. In stead of proving that
the given solutions cover all needed solutions, we can reduce the
problem to Theorem 4 in 4, a, II as follows. For irreducible
unitary representations of G of the principal continuous series, the
corresponding representations of (R) are contained in the typical
representations obtained above. And the correspondence between
the representations of G and the representations of (R) are determined
explicitely so that it can be analytically continued to the corre-
spondence between the family of those representations of G that we
construct as induced representations using Iwasawa decomposition
4, a, I on the one hand and, on the other, the family of the typical
representations of (R). (Call them the elementary representations of
G). The analytic continuation is with respect to some complex
parameters of representations in each of the two families.

Generally, the elementary representations of G are not unitary
nor irreducible. But, from the explicite forms of the corresponding
representations of (R), we can see which of them is irreducible or
infinitesimally equivalent to a unitary representation. Moreover if
it is not irreducible, it is semi-reducible and its irreducible com-
ponents can be determined from infinitesimal standpoint (i.e. as ir-
reducible representations of (R)). Thus the classification (and more)
achieved 4, a, II. This scheme of splitting elementary represen-
tations into (four or three) irreducible components is essential to
calculate their characters.

2. Method of calculating characters. To every infinitesimally
equivalent class of quasi-simple irreducible representations, there cor-
responds the unique character [4, a, III. The characters are deter-
mined completely by the values on Cartan subgroups of G (for regular
elements). There exist in G exactly two Cartan subgroups H0 and
H which are not conjugate by inner automorphisms of G, and they
are of the following forms respectively"

H0: h-

H:h- e_ ch t sh
e sh t ch

and eR, (2)

, 0, teR. (2’)
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The characters of elementary representations are known.) There-
fore if an elementary representation is irreducible, we obtained the
character of its equivalent class (Case I in 3). f an elementary
representation is reducible, we obtained a sum of characters of its
irreducible components. The problem is reduced to solve these
simultaneous linear equations. But the number of the unknowns are
greater than the number of linearly independent equations.

For each irreducible representation of G, when it is restricted
to U, we know the rule of splitting it into irreducible representations
of U by the explicitely constructed representation of ( correspond-
ing to it. Using this splitting rule and the Weyl’s character
formula for unitary groups, the value on H0 of its character can be
calculated. Therefore it remains only to calculate the value on H.

To an infinitesimal character there correspond some number of
infinitesimally equivalent classes of irreducible representations. If
an infinitesimal character is regular (Case II in 3), we can distinguish
square-integrable representations from the representations with the
same infinitesimal character.

Originally the author did it as follows. The sums of characters
of seemingly square-integrable representations with the same in-
finitesimal character can be calculated from the above linear equa-
tions. We can prove the Plancherel formula for G, using these
sums and the characters of irreducible unitary representations of
the principal continuous series 5, d. As a collorary we can identify
square-integrable representations. But after the recent work [4, c
of Harish-Chandra was published, we can identify square-integrable
representations by the values on H0 of their characters. Because,
in the paper, there is given on a compact subgroup the values of the
characters of square-integrable irreducible unitary representations.
Incidentally, the values on H0 of the characters of such irreducible
representations that are irreducible components of non-irreducible
elementary representations are different each other. (This situation
for G and SU (p, 1) is very special among simple Lie groups; see [5, c_ .)

Now the values on H of the characters of a square-integrable
representations can be determined uniquely by the fact that it defines.
on G a tempered invariant eigendistribution of all Laplace operators
of G. Thus we can identify the square-integrable representations
and obtain their characters.

With these informations, when the corresponding infinitesimal
characters are regular, we can solve the above mentioned linear

3) See [4, b. By the careful check, we see that the constant c in the formula
of Tx, in Theorem 2 of [4, b] (p. 511) is equal to the reciprocal of the order of
the Weyl group of the compact Lie group M* =-MoZ/D N Z (p. 497).
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equations of characters of irreducible representations (Case II in 3).
When the infinitesimal characters of representations are singular, the
author has not yet completed proof (Case III in 3).

These results with detailed proofs will be published elsewhere.
The author expresses his hearty thanks to Prof. H. Yoshizawa who
has keen interest on these problems and constantly encouraged him.

3. Characters. :Now we give explicite formulae of the char-
acters of irreducible representations. Put e (1 r<p/ 1) for H,
and 2=d(l<r<p-1), 2=d-ll, and 2+=e+ for H(if h is
regular, 2 [<: 1<[ 2+ [). We divide equivalent classes of irreducible
representations of G into three parts.

(I) The first part is consisted of equivalent classes, each of
which contains an irreducible elementary representation of G. The
parameter of representations are a row of integers

a (/, L, ..., l_) with l> L.> > l_,
and a pair of complex numbers (c, c,) such that c+c=an integer,
and) neither c nor c are equal to an integer, or else, both c and
c are equal to some of integers l, 1., ..., l_ resp. The character
r of such a representation (a; c, c) is as follows:

7r(h) 0 for h e H0;

ll,12, 12a--1 \"p/’ClO2’pl-X’pV2]Vl’p-+l] for h e H, ( 3
D(h)

where D(h)= 1-I (2-2,) (4.)
lr<sp+l

and I,R,,...,-1= , = ...,R-
(5)

(Ii) The second part is consisted of those equivalent classes,
each of which has a regular infinitesimal character and contains an
irreducible component of a non-irreducible elementary representation.
The parameter of representations are a row of integers (10, l, L., ..., l)
such that 10:>l>L>... l, and a pair of integers (i, 3"), 0<i<
3"<p+1.

’ is as follows:The character of the representation D(0. ),

7r(h) (- 1)+#--
D(h)

I,o, ,, ..., 2-I, 2, ..., 2-, ,, ...,
[0, 0, ,0, - 0, 0

on H0 ( 6
RP-I-19 Ap+I 9 )=l,"’,)%p

4) The 2nd condition on (cl, c.) expresses that the elementary representation
with the parameter (a; vl, c2) is irreducible.
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o, ...,-, , ...,2-, , ...,),h,
+2o,...,2-,o, ...,0, o, ...,o

o, ..., o, +, ..., a, o, ..., o

+0, ...,0, 2’,...,2-,0, ...,0 It’ on H_. (7)
0, 0, 0, 0, ’+, 9 p+l

Here the last symbol in (6)expresses the (p+l) (p+l) determinant
whose r-th row (l<r<p) is z0, , ..., , and (p+l)-th row is
0,0,...,0, ..., ...,2+, 2++, 2’, 0, 0. The symbols in (7) expresses
anologous determinants and these are an extention of. Weyl’s
notation (5).

The representation D*, is square-integrable if and only if
j- i+ 1, that is, the representations D,, D,, ..., D,+. The re-
presentations D,+ are finite dimensional. The representations D,
and D,+ are the "type 1" irreducible representations and their
eontragradient ones are constructed by Graev on bounded domains
and are square-integrable 3.

(III) The :]rd part is the limit ease of the 2nd part, and is
consisted of equivalent elasses with singular infinitesimal eharaeters,
eaeh of which contains an irreducible component of a non-irreducible
elementary representation. The parameter of representations are a
row of integers (10, l, l,..., l) such that

and a pair (i, j) or (j, i) according to i<j<p or O<j<i (with the
same i). There exist) irredueible representations of G named as
D(,0,,,...,,)*’ if i <j, and DI,,,...,) if j <i. They are given explieitly
as the corresponding representations of (R) (i.e., in infinitesimal form).

Their characters are expressed by the formula (6) for h eHo
and, probably, by the formula (7) for h e H. The values on Ho of
characters of equivalent classes of 3rd part are different eaeh other,
therefore we identify each irreducible representation by the value
on H0 of its character.

As mentioned in 2, the proof of the formula (7) for h e H is
not complete. But, the author has proved the following facts-

(a) The tempered invariant eigendistribution, whose value on

5) These integers determine the infinitesimal character of the representation.
There are (p/2)(p/l)/2 different irreducible representations which have the
same infinitesimal character.

6) There are p irreducible representations which have the same infinitesimal
character.
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H0 is equal to that of D-, or D,+ (formula (6)), is unique and is
given on H by the formula (7) for D-, or D,+ resp.

(b) Let i be the number in (8). If the formula (7) is valid
for D-, or D,+, then it is valid for all D, and D’,.

(c) For D, and D,+, (7) is valid. Because they are the
representations constructed by Graev on bounded domains 3, by
this explicite construction their characters can be calculated. They
are not square-integrable but the limit case of squareintegrable
representations. It is very probable that (7) is valid for any D-,
and D,+ in (III) as the limit cases of square-integrable representa-
tions in (II).

(d) For p=2 (i,e., SU(2,1)), (7) is valid. This is a immediate
consequence of (b) and (c).

Finally, no invariant eigendistribution is linearly independent
of the characters given in I, II, and III.
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