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Theorem 66. For each value of 3"-1, 2, let {t’}=,, be a
bounded infinite set of complex numbers; let D be a bounded, closed,
and connected domain such that the closure {} has not any point
in common with it; let N be a bounded normal operator whose point
spectrum and continuous spectrum are given by {(} and
{(} @D respectively (in fact, there exist such N(j-1, 2) as we
have already demonstrated); let

Z(2)- ((2I-N)-h, g) ( e {2L’}UD, lm, j-l, 2),
=1

where when m<h and g are arbitrarily given elements in the
complex abstract Hilbert space under consideration, whereas when

m-{h} are so chosen as to satisfy the condition {I (2I-
N)- ][ [ h ]] < for any 2 e {} UD (this is possible); let U(2)
=R(2)+Z(2) where R(2) is an integral function; and let F be a
rectifiable closed Jordan curve containing the sets {L)}OD and
{2)} D inside itself. Then

(54) 1 U(2)U(2)d2- (R-)(N)h’ g) + (R"-)(N)h’ g)
2zi r -: (-l)! -= (-1)1

(lm#, j--l, 2),
the complex line integral along P being taken counterclockwise; and
moreover the two series on the right both are absolutely convergent
when m-(j=l, 2). If, in addition to those hypotheses, there
exists a rectifiable closed Jordan curve C such that {)UD lies
inside C while {)}uD lies outside C, then

(55) a:) =0

(lm, j--l, 2).
Proof. Since

1 I R(,)R:(,)d2=O
27i r

and since, as can be found from the Cauchy theorem and the ex-

pansions of Z e (j=l, 2) shown in the preceding papers,
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1 "I Z(2)Z(2)d2-0,
2i r

by making use of the complex speetral families {K.(2)} of N(j-1, 2)
we have
1 I U()U.()d=-1 ! ()R.()d+ 1 f ()R()d2i r 2i 2i r

2zi {x)}( )"
i 1 d(K()h, g,)}R()d.+

Let d denote the distance between the two point sets F and{) D
for each value of j=l, 2. Then even if m-, here the chain of
inequalities

holds in accordance with the hypothesis [[ (I-N)- ]]" [] h, ]] <
for e {)} D. Since, in addition, R() and R:()are both regular
inside and on F, the final equality above is rewritten

m R"-)() d(K()h,, g)+
{}. (a- 1)

(R.-,(y). ) + (R. (g). )

(m,]=, 2).
If we now denote by L the length of F and set M-sup ]R(2)

for ]-1, 2, then we here have
(R,-)

,= (- 1) 2z : d
and

= (- 1)1. 2 .= d
In consequence, the two series on the right of (54) converge

absolutely for m m:-.
Next we shall turn to the proof of the latter half of the theorem.
Since, by supposition, there exists a rectifiable closed Jordan

curve C such that {)D lies inside C and furthermore such that

{)}UD lies outside C, we denote its length by 1. Then, from the
fact that () is regular inside and on C, we can find that
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<1 suplZ:(I) I sup II (I-N1)-1 I1" ]1 h. II II g ]] l<c.

On the other hand, since every e {}L]D. lies outside C and
since Z() has its singularities within C, we can find from the course
of the proof of Theorem 64 that

1 {= 1 .d(K.()hs=, g.)}d1 I Z()2:(t)dt 27iIZ() I{(} ( )2i

--)() d(K:()h: g)

(Z"-)(N)h:, g) (m)

according to the regularity of Z(2) on the closed set 2} U D, and
moreover the absolute convergency of the series on the rght for
m- is shown in the same manner as above.

The required result (55) s furnished by the two equalities just
established. The theorem has thus been proved.

Remark. Let M#(2)- (2I- N#)- for any fixed point
2 e {2} U D, (j-i, 2); let {e}=,,... be a complete orthonormal set
in ; and let

h- ee (-i, 2),

where {m}=,, is an infinite set of complex numbers such that
m ]G<(y-l, 2, 3, ...) for some positive constant G. Then we
obtain

: : 2(.)
N () =(e-)<,

so that h() can be so chosen as to satisfy the condition

(2I- N)- 1 h l < for any 2 {2} U D.
Corollary 9. Let {},, and {’}=,, both be bounded

infinite sets of complex numbers such that their closures t2} and
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{()} have no point in common; let a() and {b.)}=,,, alsoI. 3" Jv=l23,

be bounded infinite sets of complex numbers such that ] [-.(.)
(j-- 1, 2; a= 1, 2, 3, ...) and bl") [ <; and let

,= (-))" m=
-()},. are so chosen as to satisfy the conditionwhere when m ,

(a) N su -: I-.,, < (=, )

for any 2 e {2)}. Then

(im, j-i, 2),
where the two double series on the left both converge absolutely
even if m-m:-.

Proof. For each value of j-l, 2, let (#){e }=,,,.. be a complete
orthonormal system in ; let {e()}{e)} (j= 1, 2); let N be a bounded
normal operator in for each value of j=l, 2 such that its point
spectrum is given by {2)}=,, and furthermore such that

:#)e,(#)(v-l, 2,3, ...); and let h: -.()e()e, and g: b)()
for --i, 2. f e denote by the continuous spectrum of for
each value of j-l, , then there s no dcu]ty n shon that

and here it is obvious from the hypothesis (g6) that, when

2() ’" < for any {} according to the Cauchy-== (-V))
inequality. Hence the result (55) of Theorem 66 is applicable to the
() (j=l, 2). In addition, we have

(Z"-)(N)h’ g) Z"-)() d(K()h,, g) (1 <

and similarly

(1___< m.< c).



No. 8 Some Applications of Functional-Representations. XXIV 905

By virtue of (55) these two equalities just established together
imply the validity of the desired equality (57).

Next, let r be the distance between the two closed sets
and {}; let C be the circle with center at and radius r/2;
and let M, sup Z()I. Since Z() is regular at any point e {)}, M
(=1, 2, 3,...) are bounded and so there exists a positive constant
M such that MM(=1, 2, 3, ...). As a result, Cauchy’s inequality
for the coefficients of the expansion of a regular function and the
application of the maximum modulus principle to () on the disc
{: ]-2 r/2} enable us to assert that

Z-)()) M M(2/r)- (=1, 2, 3,
(-l) (r/2)-so that

The corollary has thus been proved.
Corollary 10. Let Z()(j=l, 2) be the functions defined in the

same manner as in Corollary 9, without using the foregoing
hypothesis {)} {)}=; let R() (j=l, 2) be integral functions
(inclusive of constants); let U()=R(2)+Z() (J= 1, 2), that is, let

U(2)-R(2)+ " (1<
= = (: m, 1, 2),

where the coefficients a.’2 and b.) are subject to the conditions stated
in Corollary 9; and let F be a rectifiable closed Jordan curve
containing {fL)}{fL)} inside itself. Then

2 ((2)(p)()

2zi r -= = (a-- 1)! -= = (a-- 1)]
(L m , 1, 2),

where the complex line integral on the left is extended counter-
clockwise around F; and moreover, the two double series on the
right both converge absolutely even if m,=m=.

Proof. By means of (54) and the same reasoning as that used
in the proof of Corollary 9, we can easily establish the present
corollary.

Theorem 67. For each value of j= 1, 2, let U() be the function
defined in Theorem 66; let a be the least positive constant subject
to the condition that {)}UD be on the disc {: ]a}; let the
expansion of U() on the exterior of this least disc be
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where 0<<i, a<o<oo, and

a_1 I:U(pe9 cospt dt
7C

b 1 IU(pv) sinpt d;

let K=(a)+(b); and let F be the positively oriented curve
defined in Theorem 66. Then K> (p=l, 2, 3, ...) are constants

independent of p for j= 1, 2; and assuming that "+ denotes
R(+)(O)

1 U()d when R+*)(O)-O, the equalities
2i (p+

ml (1)
(58) (R"-)(N)h’ g) i (p+l)R)(0) + (l<m)

R+)(0)
and

m2

(59) (R"-’(N2)h"’ g) 1 (p+ 1)R)(0 + (1 <m)
4

hold for the respective ordinary parts R() and R(2) of U() and

Proof. Since it is apparent that the results of Theorem 65 are
also valid for U(2) (j= 1, 2),

Z()R()d
2i r =o

and the series on the right is absolutely convergent. On the other
hand, we have

rz(2)R(2)d2=(R-(N)h’)(- 1)
(l<=mN)

as will be seen from the course of the roof of heorem 66. hese
equalities yield the required relation (8). In a similar manner, the
relation (gg) can be established. Eaeh of K (p=l, , g,...) is of
course a constant independent of p roided that <p< (-1, 2),
as we hae already ointed out in heorem 6g.

With these results, the roof of the theorem is complete.


