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We have discussed in [4 and [5 on the methods of the con-
struction of a branching Markov process. The purpose of this
paper is to give another analytic method of construction based on
S-equation.) To do this we shall first construct a solution of
S-equation with a initial value by the usual method of successive
approximation and then we shall define a branching semi-group
with the aid of these solutions. It will turn out that this semi-
group coincides with that constructed in [5 by the method of
Moyal 7. This fact follows from a result of 5 that the semi-
group constructed in [5 by the method of Moyal is a branching
semi-group. (the proof depends essentially on the Theorem 1 of [_2.)
But we shall give still another proof based on the uniquness of the
solution of the forward equation.) This may be considered as a
generalization of a method of Harris _6 to prove that (z, q)-
minimal Markov chain on Z+={0, 1, 2, 3,...} where =p_+ and
q=jb is a branching Markov process, i.e. its transition probability
{p(t)} satisfies

2, pq(t)s p(t)s for every 0< s < 1
j=-0

Let S be a compact metrizable space and S=[J S’{z/} be
-’0

defined as in [2. Let T be a positive strongly continuous semi-
group on C(S) such that Ttl=l and take k eC(S)+. Let (R) be
the infinitesimal generator of Tt in the Hille-Yosida sense and (ff)
be the domain of (R). Then it is well known that there exists uniquely
a positive strongly continuous semi-group T on C(S) such that
T1__<1 and its generator ff0 is given by
( 1 ) (R)0= (R)_ k and ((R)0) ((R)).

*) The authors’ present addresses: Stanford Univ., Cornell Univ., and Univ.
of Washington.

1) Cf. [3. In the following we use the terminology and the notation of [2,
[3, [4, and [5.

2) Cf.
8) {pt}, i=O, 1, 2, 3,... is a given probability sequence and b is a given posi-

tive constant.
4) A probabilistic method to obtain Tt from the given Tt and k is the killing

defined by the multiplicative functional exp
\ do /
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Let
Ttf(x) I- T(x, dy)f(y), e S,

and set
( 2 K(x, dsdy)= T:(x, dy)k(y)ds, x, y e S, s e 0, co).

Finally let 7(x, dy), x e S, y e S-{z/} be a non-negative kernell
on S x (S-{z}) such that (x, S-{z})= 1 for every x e S and F[x; f
defined by

( 3 ) Fx; f-I (x,
s-{}

belongs to C(S), provided that f e C*(S)+.
Lemma 1. For every O <r l, we have

( 4 IIf-O IIs<--C IIf-g
and
(5) Illflu}-(glvl[s<-_K[[ul[ I[f-g[[+Lllu-vll,)

provided that f, g, u, v C(S) and O_f, g<__r, where C, K, and L
are positive constants.

Given f C(S) such that 0___<f=<_l, we shall consider the following
equation (S-equation)

( 6 ) u(x)- T:f(x)-F K(x, dsdy)F[y; ut_,,
then we have

Theorem 1. There exists a unique solution ut(x)=_ut(x;f) of
(6), provided that f C*(S)+. Furthermore, it satisfies

e c *(s)/,(i)
(ii)
and
(iii) ut+,(. ;f)= ut(.; u,(.; f)).

This theorem is proved by the usual method of successive
approximation if we note that for every Orl we have
(7) ][ F[. f-F[. g] [[-_<C II f-g
provided that f, g eC(S) and 0f, g<=r, where C is a positive
constant. (7) follows directly from Lemma 1 (4). ut(. ;f) is given
as a limit of u") in C(S), which is defined successively by

dsdy)F[y; ,(-1)(.),u") T,’f-F K(

By vrtue of ths construction, t s esy to see that for xed
t>O and x e S u,(x; f) is given by

f)-

where [(dy) is a substochastic measure on S-{z/}. Then we find

5) c.(s)+={fec(s), ogf<l}.
6) cf. Definition 2.1 of [3].
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that, by Lemma 2.2 of [3, there exists a substochastic kernel
T(x, dy) on (S- {z/}) (S- {z/}) such that

8 ut(.; f)(x)- Tt(x, dy)f(y).
S-{}

It is to be noticed that {Tt} is uniquely determined by virtue of
Lemma 2.1 of [3.

Then we can prove that Tt defines a strongly continuous semi-
group on Co(S) by means of (4) in Lemma 1, Lemma 2.1 of
and Theorem 1. Moreover the formula (8) proves that Tt is a
branching semi-group. Thus we have

Theorem 2. There exists a unique non-negative strongly
continuous branching semi-group Tt on Co(S) such that ut(x)

Tt](x), f e C*(S)+, x e S is a solution of (6).
Now let (G) be the domain of the infinitesimal generator G

of Tt in Hille-Yosida sense. Then we have the following
Theorem 3. If f e ((R)) C*(S)+, then ] e (G) and

( 9 G=(flc(f)),
where

c(f)=ffSf/k(.)(F[. f_ -f).
The next two theorems are the direct consequences of the

above theorem.
Theorem 4. If f e ((R)) C*(S)+, then ut(x)= Tt?(x), x

in )((R)) and
u =(u+k(.)(F[.; u(10) t

II u-f l]---o, (t-.o).
Theorem 0 Put At(x, f)= TrY(x), x e S-{z/}, f e +. If

f e ((R)) +, then At(x, f) is differentiable in t, Do()At(x, f)
exists and we have

At -D(f)At,
(ii)

Ao+(X, f)=f(x)
In [3] we have called (10) and (11) the backward and the

forward equation respectively. Now we shall see that semi-group
Tt of Theorem 2 is determined completely by (10) and (11). Namely
we have

Theorem 6. Let T[ be a contruction semi-group on Bo(S)
such that [[ T[f-fl[s--O when t--.O for every f e Co(S).

(i) If u;(x)- T[](x), x e S satisfies (10), then T[- Tt.

7) - is the strong derivative.

8) +={feC(S),O<f<l}. For the definition of Dc(f)At, we refer to [3].
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(ii) If A(x, f)- Tif( ), x e S-{A}, f e + satisfies (11), then
T:- T.

The proof of (i)is reduced to the uniqueness of the solution
of (10) for a given f e C*(S)+, while the proof of (ii) is based on
the following lemma concerning the uniqueness of the solution of
(ii).

Lemma 2. Let At(f)be a (real-valued) function defined on
t e 0, ) and f e + which satisfies the following conditions:

(a) If f e+ )((R)), then A,(f) is continuously differentiable
in t and D()A,(f) exists.

b For every O r< l, we have
At(f) At(g) I<= C. [[ f- g II,

provided that f, ge+, 0f, g<=r, and >=0, where C. is
a positive constant.

c For every O r l we have
Do(f)A(f)- Dc(g)At(g)
<a II c(f) tl II f- II+bll c(f)-c() II

for every t, provided that f g e + ((), Of gl,
where a. and b. are positive constants.

If At satisfies
OAt(f)-Dc)At(f)(i2) t
Ao+(f)-0,

at every f e+(ff), then we have At(f)=-O.
Now, we can prove that the semi-group T of Theorem 2

coincides with the semi-group T constructed in [5], where T is
given by

(13) Ttf(x)- T:f(x),
=0

T? is defined by (3.1)and (3.2) of [5], and it gives the minimal
solution of M-equation. We have proved in [5] that Tt is a
branching semi-group (the proof is essentially based on Theorem 1
of [2])and so it satisfies the S-equation (6). Therefore in order
to conclude that T-Tt, we are able to use the uniqueness of the
solution of (6).

The above proof depends explicitely on the branching property
of Tt. In the following we give another proof based on the unique-
ness of the solution of the forward equation (11) not depending
on the branching property of Tt. Define a kernel (x, dy) on
(S- {A}) x (S- {A}) by

dy)=<f kF[. f]>(x),
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(14)

where

(cf. Lemma 2.2 of 3), then the operator ($) defined by (2.12) in
F5 is given by

(t)f(x)-I:drI p(r, x, dy)f(y), f e Co(S),
s-{}

Now put)
(p(t, x, dy)= Is-I T(t, x, dz)l(z, dy).

(15) qg*(t, x, dy)-.ls_()/(x, dz) T(t, z, dy),

then clearly we have

I s_,qg(s, x, dz)T(t- s, z, dy)-I T(s, x, dz)*(t- s, z, dy).
8-{}

This relation, (13) and (15) permit us to have

(16) Ttf(x) Ttf(x) / ds Ts((T-sf kF., Tt_f)(x).

From this formula we have by some simple calculations that
t(x,f)=_’](x) satisfies (11) and so by Theorem 6 (ii)we have
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9) The following discussion is similar to the arguments usually given in the
proof that every minimal Markov chain satisfies forward differential equation.

cf. [i].


