219. A Characterization of Axiom Schema Playing the Rôle of Tertium non Datur in Intuitionistic Logic

By Masazumi Hanazawa

Department of Mathematics, Tokyo University of Education (Comm. by Zyoiti Suetuna, M.J.A., Nov. 12, 1966)

As is well-known, there are some axiom schemas, by each of which a system of classical logic is obtained from any system of intuitionistic logic.

$$A \lor \neg A$$
 (tertium non datur),
 $\neg \neg A \rightarrow A$ (discharge of double negation)

and

$$((A \rightarrow B) \rightarrow A) \rightarrow A$$
 (Peirce's law)

are famous examples among them. The purpose of this paper is to give a criterion for those axiom schemas, in the scope of *propositional logic*.

Main result. Let us consider the three-valued logic defined by the following truth-tables:

$A \wedge B$					$A \vee B$				
A	t	u	f	A = A	t	u	f	_	
t	t	u	f	t	t	t	t		
u	u	u	f	\mathfrak{u}	t	u	u		
f	f	f	f	f	t	u	f		
1	A–	→B			A				
A	A-t	<i>→B</i>	f		A	_			
			f		A	_			
A	t	u		<u>A</u>		_			

where truth-values t, f, and u correspond to 'true', 'false', and 'unknown', 'prespectively. Then our main result can be stated as follows:

If and only if a formula A is a tautology in usual sense (or

¹⁾ The truth-value u is not exactly corresponding to the usual meaning of the word "unknown".

in the usual two-valued logic) and is not identically true in the above-mentioned three-valued logic, the classical propositional calculus is obtained from the intuitionistic propositional calculus by adjoining $\mathfrak A$ as an axiom schema.

In the following, by "t-formula" we shall mean such a formula as is identically true in that three-valued logic. Then our main result is divided into the following two theorems:

Theorem 1. If the classical propositional calculus is obtained from the intiutionistic propositional calculus by adjoining $\mathfrak A$ as an axiom schema, then $\mathfrak A$ is not a t-formula.

Theorem 2. If $\mathfrak A$ is a tautology and is not a t-formula, then the classical propositional calculus is obtained from the intuitionistic propositional calculus by adjoining $\mathfrak A$ as an axiom schema.

1. Proof of Theorem 1. Every axiom of the intuitionistic propositional calculus is a t-formula, and also the result obtained from a t-formula by substituting arbitrary formulas for propositional variables is a t-formula. By every rule of inference in the intuitionistic propositional calculus (e.g. modus ponens), from one or more t-formulas we infer a t-formula. Then the provable formulas in the system obtained from the intuitionistic propositional calculus by adjoining some t-formulas as axiom schemas are all t-formulas.

On the other hand, there is such a tautology as is not a t-formula. For example, the tautology

$$\neg \neg A \rightarrow A$$

is not a t-formula.

Let the system S obtained from the intuitionistic propositional calculus by adjoining a formula $\mathfrak A$ as an axiom schema be equivalent to classical. Then every tautology is provable in S. If $\mathfrak A$ were a t-formula, then the tautology

$$\neg\neg A \rightarrow A$$

which is provable in S would be a t-formula. Hence $\mathfrak A$ can not be a t-formula, q.e.d.

2. Proof of Theorem 2. 2.1. Lemma 1. Let $\mathfrak A$ be a formula containing only one propositional variable A. Then one of the formulas

$$\neg \neg A \rightarrow \mathfrak{A}, \quad \neg \neg A \rightarrow \neg \mathfrak{A}$$

and

$$\neg\neg A \rightarrow (\mathfrak{A} \leftrightarrow A)$$

is provable intuitionistically.

This lemma is easily proved by mathematical induction on the number of logical symbols contained in \mathfrak{A} , and by help of the intuitionistic provability of formulas of the following forms:

2.11. Corollary 1. Let $\mathfrak A$ be a formula containing only one propositional variable A. If $\mathfrak A$ is a tautology and is not a t-formula, then

$$\neg \neg A \rightarrow (\mathfrak{A} \leftrightarrow A)$$

is provable intuitionistically.

Proof. From the fact that \mathfrak{A} is a tautology,

$$\neg\neg A \rightarrow \neg \mathfrak{A}$$

is not a t-formula, accordingly it is not provable intuitionistically. If $\neg \neg A \rightarrow \mathfrak{A}$

were provable intuitionistically, then it would be a t-formula, and then $\mathfrak A$ would be a t-formula, because $\mathfrak A$ is a tautology. Hence

$$\neg \neg A \rightarrow (\mathfrak{A} \leftrightarrow A)$$

must be provable intuitionistically, q.e.d.

2.12. Corollary 2. Let $\mathfrak A$ be a tautology containing only one propositional variable A and be not a t-formula. Then the system S obtained from the intuitionistic propositional calculus by adjoining $\mathfrak A$ as an axiom schema is equivalent to the classical propositional calculus.

Proof. Firstly, let us remark the fact that the system S is a subsystem of the classical propositional calculus. Then we shall prove only the fact that classically provable formulas are all provable in S.

By Corollary 1, the formula

$$\neg \neg A \rightarrow (\mathfrak{A} \rightarrow A)$$

is provable intuitionistically, then so is

$$\mathfrak{A} \longrightarrow (\neg \neg A \longrightarrow A).$$

Accordingly, the discharge of double negation

$$\neg\neg A \rightarrow A$$

is provable in S, hence we can see the fact that all tautologies are provable in S, q.e.d.

2.2. Lemma 2. Let $\mathfrak{A}(X_1, \dots, X_n)$ be a tautology containing no propositional variable except X_1, \dots, X_n , and be not a t-formula. Then there are appropriate formulas $\mathfrak{B}_1(A), \dots, \mathfrak{B}_n(A)$, which contain no propositional variable except A, and

$$\mathfrak{A}(\mathfrak{B}_{1}(A), \cdots, \mathfrak{B}_{n}(A))$$

is such a tautology as is not a t-formula.

Proof. It is clear that $\mathfrak{A}(\mathfrak{B}_{1}(A), \dots, \mathfrak{B}_{n}(A))$ is a tautology. Then we shall prove only the fact that it is not a t-formula.

From the fact that $\mathfrak{A}(X_1,\cdots,X_n)$ is not a t-formula, there is such a valuation²⁾ \mathfrak{v} as makes $\mathfrak{A}(X_1,\cdots,X_n)$ have a truth-value distinct from t. By $\mathfrak{v}(X)$ we mean the truth-value of X in \mathfrak{v} . Then we have

$$\mathfrak{A}(\mathfrak{v}(X_1), \cdots, \mathfrak{v}(X_n)) \neq \mathbf{t}$$
.

We define $\mathfrak{B}_i(A)$ by

$$\mathfrak{B}_i(A) = egin{cases} \neg \neg A & ext{ if } \mathfrak{v}(X_i) = \mathfrak{t}, \ A & ext{ if } \mathfrak{v}(X_i) = \mathfrak{u}, \ \neg A & ext{ if } \mathfrak{v}(X_i) = \mathfrak{f} \end{cases} \quad (i = 1, 2, \cdots, n).$$

Then we have

$$\mathfrak{B}_i(\mathfrak{u}) = \mathfrak{b}(X_i)$$
 $(i=1, 2, \cdots, n).$

Hence, $\mathfrak{A}(\mathfrak{B}_{1}(A), \dots, \mathfrak{B}_{n}(A))$ is not a t-formula, because $\mathfrak{A}(\mathfrak{B}_{1}(\mathfrak{u}), \dots, \mathfrak{B}_{n}(\mathfrak{u})) = \mathfrak{A}(\mathfrak{v}(X_{1}), \dots, \mathfrak{v}(X_{n})) \neq \mathfrak{t}, \text{ q.e.d.}$

2.3. Let $\mathfrak A$ be a tautology which is not a t-formula. Let S be the system obtained from the intuitionistic propositional calculus by adjoining $\mathfrak A$ as an axiom schema. From the fact that $\mathfrak A$ is a tautology, we can see the fact that S is a subsystem of the classical propositional calculus. Accordingly, for our proof of Theorem 2, it is sufficient to prove the fact that there is a tautology, which contains only one propositional variable and is not a t-formula, and which is provable in S (by Corollary 2 of Lemma 1). But, by Lemma 2 the existence of such a tautology is clear. Then the proof of Theorem 2 is completed.

²⁾ By 'valuation' we mean here a valuation in the three-valued logic defined before.