253. Boolean Multiplicative Closures. I

By Roberto Cignoli
Instituto de Matemática, Universidad Nacional del Sur, Bahia Blanca, Argentina (Comm. by Kinjirô Kunugi, m.J.A., Dec. 12, 1966)

O. Introduction. We shall say that a multiplicative closure operator ∇ defined on a distributive lattice L with zero and unit is a Boolean multiplicative closure operator if any closed element under ∇ has a complement in L. Examples of Boolean multiplicative closure operators are the possibility operator defined by Gr. Moisil ([7], [8]) ${ }^{1)}$ in (three-valued) Lukasiewicz algebras (see also [3] and [4]), and the operator D_{1} defined by G. Epstein ([5], Definition 2) in Post algebras.

The aim of this note is to give a characterization of those distributive lattices (with zero and unit) that admits a Boolean multiplicative closure operator. In $\S 1$ we give the definitions and notations. In §2 we characterize additive-multiplicative closure operators by the set of their closed elements and in §3 we apply the results of $\S 2$ to solve our main problem. Finally, in $\S 4$ we show how some of the previous theorems can be extended to general multiplicative closure operators.

These results have some applications in the study of the lattice theory of many-valued logics. We were inspired in A. Monteiro's work on the ideal theory of (three-valued) Lukasiewicz algebras, that will be published elsewhere.

1. Definitions and notations. Let L be a distributive lattice with zero 0 and unit 1 . we shall consider operators V from L into L satisfying some of the following conditions:
C0) $\nabla 0=0$,
C1) $x \leq \nabla x$,
C2) $\nabla x=\nabla \nabla x$,
C3) If $x \leq y$, then $\nabla x \leq \nabla y$,
C4) $\nabla(x \vee y)=\nabla x \vee \nabla y$,
C5) $\nabla(x \wedge y)=\nabla x \wedge \nabla y$.

If V satisfies C1), C2), and C3) it is called a closure operator (see [9], [12], [2]), and we shall denote the set of all closure operators on L by $C(L)$.

If ∇ satisfies C1), C2), and C4), (or C1), C2), and C5)), it is called an additive closure operator ($[10],[11],[6]$) (or multiplicative closure operator, [1], [6]), and we shall denote by $\mathrm{Ca}(L)(\mathrm{Cm}(L))$ the set of additive (multiplicative) closure operators defined on L. It is clear

[^0]all that $\mathrm{Ca}(L) \subset \mathrm{C}(L)$ and that $\operatorname{Cm}(L) \subset \mathrm{C}(L)$. We define $\operatorname{Cam}(L)$ $=\mathrm{Ca}(L) \cap \mathrm{Cm}(L)$.

If $A(L)$ is some class of operators defined on L, we denote by $\operatorname{Ao}(L)$ the set of all $\nabla \in A(L)$ that satisfies C 0).

We shall say that a subset A of L is lower relatively complete if for all $x \in L$, the set $\{a \in A: x \leq a\}$ has a least element (i.e., an infimum belonging to A). We shall denote by $R(L)$ the class of all lower relatively complete subsets of L that contains the unit 1 , and by $\operatorname{Ro}(L)$ the set of all $A \in R(L)$ such that $0 \in A$.

It is clear that if $A \in R(L)$, and $x, y \in A$, then $x \wedge y \in A$. So, if $A \in R(L), A$ is a sublattice of L if and only if $x, y \in A$ implies that $x \vee y \in A$. We shall denote by $\operatorname{Rs}(L)(\operatorname{Ros}(L))$ the set of all sublattices of L belonging to $\mathrm{R}(L)(\operatorname{Ro}(L))$.

If V is an operator of L into L, we say that $k \in L$ is invariant under ∇ if $\nabla k=k$, and we denote by $I(\nabla)$ the set of all invariant elements under ∇. If $\nabla \in C(L)$, it is usual to call the invariant elements under ∇ closed elements. The range of the operator ∇ is the set $\nabla L=\{x: x=\nabla y$ for some $y \in L\}$.

We reproduce here, for further reference, the following well known theorem ([9], [11]):

Theorem. 1.1. If $\nabla \in C(L)$, then $\nabla(L)=I(\nabla) \in R(L)$, and for all $x \in L$ we have:

$$
\begin{equation*}
\nabla x=\wedge\{k \in K: \quad x \leq k\} \tag{1}
\end{equation*}
$$

where $K=I(\nabla)$. Conversely, if $K \in R(L)$, then (1) defines a $\nabla \in C(L)$ and moreover, $K=I(\nabla)=\nabla(L) . \quad \nabla \in \operatorname{Co}(L)$ if and only if $I(\nabla) \in \operatorname{Ro}(L)$; and $\nabla \in \mathrm{Ca}(L)$ if and only if $I(\nabla) \in \operatorname{Rs}(L)$.
2. Additive-multiplicative closures. Let S be a sublattice of L. An ideal I of L is called an S-ideal in case that for any $x \in I$ there exits an element $s \in S$ such that $s \in I$ and $x \leq s$. It is easy to see that if I is an S-ideal, then the set $I_{1}=I \cap S$ is an ideal of the lattice S and that I is the ideal of L generated by I_{1} (i.e., $I=\left\{x \in L\right.$: there exists $s \in I_{1}$ such that $\left.x \leq s\right\}$). Conversely, if I_{1} is an ideal of S, then the ideal I of L generated by I_{1} is an S-ideal and $I_{1}=I \cap S$. So, we have a one-to-one correspondence between the S-ideals of L and the ideals of the lattice S. An ideal I of S is called S-prime in case that P is an S-ideal and P_{1} is a prime ideal of the lattice S.
2.1. Lemma. If I is an S-ideal contained in the prime ideal P of L, then there exists an S-prime ideal \bar{P} such that $I \subset \bar{P} \subset P$.

Proof. Setting $P_{1}=P \cap S$, we have that P_{1} is a prime ideal of S. Hence, the ideal \bar{P} generated in L by P_{1} is an S-prime ideal, and obviously, $\bar{P} \subset P$. Furthermore, $I_{1}=I \cap S \subset P \cap S=P_{1}$, so $I \subset \bar{P}$.

The well known fact that in a distributive lattice every proper ideal is a set-intersection of prime ideals, allow us to prove the following:
2.2. Corollary. Every proper S-ideal is a set-intersection of S-prime ideals.
2.3. Corollary. If $s \in S$ and $x \not \leq s$, then there exists an S-prime ideal P such that $s \in P$ and $x \notin P$.

An S-ideal M of L that is not contained in any proper S-ideal different from M itself is called an S-maximal ideal. It is easy to see that M is a S-maximal ideal if and only if $M_{1}=M \cap S$ is a maximal ideal of the lattice S. With a standard technique we can prove that:
2.4. Lemma. If the sublattice S has a unit 1^{\prime}, then any S ideal can be extended to an S-maximal ideal.

It is also clear that any S-maximal ideal is S-prime.
2.5. Theorem. If $\nabla \in \operatorname{Cam}(L)$ and $K=I(\nabla)$, then an ideal I of L is a K-ideal if and only if $x \in I$ implies that $\nabla x \in I$. In this case we have that $I_{1}=I \cap K=\nabla I=\{\nabla x: x \in I\}$.

Proof. By 1.1. we know that $K \in \operatorname{Rs}(L)$, so K is a sublattice of L. If I is a K-ideal and $x \in I$, then there exists a $k \in I \cap K$ such that $x \leq k$. Hence, $\nabla x \leq k$, and as k belongs to the ideal I, it follows that $\nabla x \in I$. On the other hand, if I is an ideal of L such that $x \in I$ implies that $\nabla x \in I$, it is obvious that I is a K-ideal. The second part of the theorem is an easy consequence of the first.
Q.E.D.

Our next theorem establish a characteristic property of the set of all closed elements under an additive-multiplicative closure operator on a distributive lattice:
2.6. Theorem. $\quad \nabla \in \operatorname{Cam}(L)$ if and only if $K=I(\nabla) \in \operatorname{Rs}(L)$ and every K-prime ideal is a prime ideal of L.

Proof. Assume $\nabla \in \operatorname{Cam}(L)$. As $\operatorname{Cam}(L) \subset \operatorname{Ca}(L)$, from 1.1. follows that $K \in \operatorname{Rs}(L)$. Let P be a K-prime ideal. If $x \wedge y \in P$, then by 2.5., we have:

$$
\nabla x \wedge \nabla y=\nabla(x \wedge y) \in P \cap K=P_{1}
$$

but as P_{1} is prime in $K, \nabla x \in P_{1}$ or $\nabla y \in P_{1}$, therefore, applying again 2.5., we get $x \in P$ or $y \in P$, and the necessity of the conditions is proved. Assume now that $K \in \operatorname{Rs}(L)$ and that any K-prime ideal is a prime ideal of L. By 1.1., we know that $\nabla \in \operatorname{Ca}(L)$, then we have:

$$
\begin{equation*}
\nabla(x \wedge y) \leq \nabla x \wedge \nabla y \tag{1}
\end{equation*}
$$

So, to prove C5) we need to prove:

$$
\begin{equation*}
\nabla x \wedge \nabla y \leq \nabla(x \wedge y) \tag{2}
\end{equation*}
$$

Suppose that (2) is not true. Therefore, by 2.3., there exits a K -
prime ideal P such that:
(3) $\nabla(x \wedge y) \in P$ and (4) $\nabla x \wedge \nabla y \notin P$.

From (3) we have $x \wedge y \in P$, and as P is prime, $x \in P$ or $y \in P$. Applying 2.5. we get that $\nabla x \in P$ or $\nabla y \in P$, which contradicts (4), and the sufficiency of the conditions is proved. Q.E.D.

Now we are going to determine a particular class of K-prime ideals.

We say that a prime ideal P of L is a minimal prime ideal if it is a minimal element of the set of all prime ideals of L ordered by set-inclusion. It is well known that any prime ideal of L contains a minimal prime ideal (we suppose that L has a zero) and that an ideal of L is a minimal prime ideal if and only if its complementary set is a maximal filter (i.e., maximal dual ideal).
 prime ideal of L is a K-prime ideal.

Proof. Let P be a minimal prime ideal of L. It is clear that $P_{1}=P \cap K$ is a prime ideal of K, so we need to prove that P is a K-ideal, or, taking account of 2.5., that $x \in P$ implies that $\nabla x \in P$. Suppose that the last proposition is not true, that is, that there exists an element $x \in L$ such that:
(1) $x \in P$
and
(2) $\nabla x \notin P$

Let F be the complementary set of P (with respect to L). (1) and (2) are equivalent respectively to:
(3) $x \notin F$
and
(4) $\nabla x \in F$

Let \bar{F} be the filter generated by the element x and the filter F. By (3) it follows that:

$$
\begin{equation*}
F \subset \bar{F} \quad \text { and } \quad \bar{F} \neq F \tag{5}
\end{equation*}
$$

We are going to prove now:

$$
\begin{equation*}
\bar{F} \neq L \tag{6}
\end{equation*}
$$

or equivalently:

$$
\begin{equation*}
x \wedge f \neq 0 \quad \text { for all } f \in F \tag{7}
\end{equation*}
$$

To prove (7), suppose that there exists an element f_{1} such that:
(8) $f_{1} \in F$ and (9) $x \wedge f_{1}=0$

From (9) follows:

$$
\begin{equation*}
\nabla x \wedge \nabla f_{1}=\nabla\left(x \wedge f_{1}\right)=0 \tag{10}
\end{equation*}
$$

As F is a filter, (4), (8), and (10) imply that $0 \in F$, or, what is the same, that $F=L$. Then, we would have $P=\phi$, but this is impossible by the hypothesis on P. Hence (6) is proved. But conditions (5) and (6) are incompatible, because F is a maximal filter, hence (1) and (2) cannot hold simultaneously.
Q.E.D.

[^0]: 1) The references are contained in the second paper.
