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O. Introduction. We shall say that a multiplicative closure
operator V defined on a distributive lattice L with zero and unit is
a Boolean mutiplicative closure operator if any closed element under
V has a complement in L. Examples of Boolean multiplicative closure
operators are the possibility operator defined by Gr. Moisil (7,
7_8_)) in (three-valued) Lukasiewicz algebras (see also 3 and [4),
and the operator D defined by G. Epstein ([5, Definition 2) in Post
algebras.

The aim of this note is to give a characterization of those dis-
tributive lattices (with zero and unit) that admits a Boolean multiplica-
rive closure operator. In 1 we give the definitions and notations.
In 2 we characterize additive-multiplicative closure operators by
the set of their closed elements and in 3 we apply the results of
2 to solve our main problem. Finally, in 4 we show how some

of the previous theorems can be extended to general multiplicative
closure operators.

These results have some applications in the study of the lattice
theory of many-valued logics. We were inspired in A. Monteiro’s
work on the ideal theory of (three-valued) Lukasiewicz algebras,
that will be published elsewhere.

1. Definitions and notations. Let L be a distributive lattice
with zero 0 and unit 1. we shall consider operators /7 from L into
L satisfying some of the following conditions"

CO) ]70-0, C1) x<_rx, C2) rx-lrx,
C3) If x<_y, then Vx<_Vy, C4) V(xVy)-VxVVy,
C5) (xAy) TxAy.

If V satisfies C1), C2), and C3) it is called a closure operator (see
[9, [12_, [2), and we shall denote the set of all closure operators
on L by C(L).

If V satisfies C1), C2), and C4), (or C1), C2), and C5)), it is called
an additive closure operator (10_, [11, [6) (or multiplicative closure
operator, [1, 6), and we shall denote by Ca(L)(Cm(L)) the set of
additive (multiplicative) closure operators defined on L. It is clear

The references are contained in the second paper.
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all that Ca(L) C(L) and that Cm(L) C(L). We define Cam(L)
Ca(L) Cm(L).

If A(L) is some class of operators defined on L, we denote by
Ao(L) the set of all /7 e A(L) that satisfies CO).

We shall say that a subset A of L is lower relatively complete
if for all xeL, the set {aeA: x<_a} has a least element (i.e., an
infimum belonging to A). We shall denote by R(L) the class of all
lower relatively complete subsets of L that contains the unit 1, and
by Ro(L) the set of all A e R(L) such that 0 e A.

It is clear that if AeR(L), and x, yeA, then xAyeA. So, if
A e R(L), A is a sublattice of L if and only if x, y e A implies that
x/y e A. We shall denote by Rs(L)(Ros(L)) the set of all sublattices
of L belonging to R(L)(Ro(L)).

If/7 is an operator of L into L, we say that k e L is invariant
under 7 if gk-k, and we denote by I(7) the set of all invariant
elements under 7. If /7 e C(L), it is usual to call the invariant
elements under P’ closed elements. The range of the operator t7 is
the set ’L-{x" x-y for some y e L}.

We reproduce here, for further reference, the following well
known theorem ([9, [11)"

Theorem. 1.1. If e C(L), then (L)-I() e R(L), and for all
x e L we have:
(1) x- / {k e K: x_k}
where K-I(’). Conversely, if K e R(L), then (1) defines a e C(L)
and moreover, K= I(’)- g(L). e Co(L) if and only if I(P’) e Ro(L);
and P’ e Ca(L) if and only if I() e Rs(L).

2. Additive.multiplicative closures. Let S be a sublattice
of L. An ideal I of L is called an S-ideal in case that for any
xeI there exits an element seS such that seIand x<_s. It is
easy to see that if I is an S-ideal, then the set /-I S is an ideal
of the lattice S and that I is the ideal of L generated by / (i.e.,
I={xe L. there exists s e/ such that x<_s}). Conversely, if / is
an ideal of S, then the ideal I of L generated by / is an S-ideal
and/-IS. So, we have a one-to-one correspondence between the
S-ideals of L and the ideals of the lattice S. An ideal I of S is
called S-prime in case that P is an S-ideal and P is a prime ideal
of the lattice S.

2.1. Lemma. If I is an S-ideal contained in the prime ideal
P of L, then there exists an S-prime ideal P such that IPP.

Proot. Setting P-P S, we have that P is a prime ideal of
S. Hence, the ideal /5 generated in L by P is an S-prime ideal,
and obviously, PP. Furthermore, I-ISPS-P, so IP.
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The well known fact that in a distributive lattice every proper
ideal is a set-intersection of prime ideals, allow us to prove the
following:

2.2. Corollary. Every proper S-ideal is a set-intersection of
S-prime ideals.

2.:. Corollary. If s S and xgs, then there exists an S-prime
ideal P such that s P and x P.

An S-ideal M of L that is not contained in any proper S-ideal
different from M itself is called an S-maximal ideal. It is easy to
see that M is a S-maximal ideal if and only if M=MS is a
maximal ideal of the lattice S. With a standard technique we can
prove that"

2.4. Lemma. If the sublattice S has a unit 1’, then any S-
ideal can bs extended to an S-maximal ideal.

It is also clear that any S-maximal ideal is S-prime.
2.5. Theorem. If Cam(L)and K=I(/7), then an ideal I of

L is a K-ideal if and only if xelimplies that xeL In this
case we have that I,-I K=I={x: x I}.

Proof. By 1.1. we know that K e Rs(L), so K is a sublattice
of L. If I is a K-ideal and x e I, then there exists a k e I K such
that xEk. Hence, xgk, and as k belongs to the ideal I, it follows
that P’xeI. On the other hand, if I is an ideal of L such that
x eI implies that P’xeI, it is obvious that I is a K-ideal. The
second part of the theorem is an easy consequence of the first.

Q.E.D.
Our next theorem establish a characteristic property of the set

of all closed elements under an additive-multiplicative closure operator
on a distributive lattice:

2.6. Theorem. F Cam(L) if and only if K= I(F) e Rs(L) and
every K-prime ideal is a prime ideal of L.

Proof. Assume V e Cam(L). As Cam(L)cCa(L), from 1.1. fol-
lows that K e Rs(L). Let P be a K-prime ideal. If xAy e P, then
by 2.5., we have:

VxAVy V(xAy) e P K-P
but as P is prime in K, P’x e P or Ty e P, therefore, applying again
2.5., we get x e P or y e P, and the necessity of the conditions is
proved. Assume now that K e Rs(L) and that any K-prime ideal is
a prime ideal of L. By 1.1., we know that t7 e Ca(L), then we have:

1 ) P’(xAy)_P’xAP’y.
So, to prove C5) we need to prove:

( 2 P’xAy_P’(xAy).
Suppose that (2) is not true. Therefore, by 2.3., there exits a K-
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prime ideal P such that:
(3) P’(xAy)eP and (4) VxAgyeP.

From (3) we have xAyeP, and as P is prime, xeP or yeP.
Applying 2.5. we get that /rx e P or /rye P, which contradicts (4),
and the sufficiency of the conditions is proved. Q.E.D.

Now we are going to determine a particular class of K-prime
ideals.

We say that a prime ideal P of L is a minimal prime ideal
if it is a minimal element of the set of all prime ideals of L ordered
by set-inclusion. It is well known that any prime ideal o.f L con-
tains a minimal prime ideal (we suppose that L has a zero) and
that an ideal of L is a minimal prime ideal if and only if its
complementary set is a maximal filter (i.e., maximal dual ideal).

2.7. Theorem. IfV e Coam(L) and K- I(V), then every minimal
prime ideal of L is a K-prime ideal.

Proof. Let P be a minimal prime ideal of L. It is clear that
P=PK is a prime ideal of K, so we need to prove that P is a
K-ideal, or, taking account of 2.5., that x e P implies that Vx e P.
Suppose that the last proposition is not true, that is, that there
exists an element x e L such that"

(1) xeP and (2) VxeP
Let F be the complementary set of P (with respect to L). (1) and
(2) are equivalent respectively to:

(3) xeF and (4) VxeF
Let be the filter generated by the element x and the filter F.
By (3) it follows that:

(5) FF and FcF
We are going to prove now’

(6) FCL
or equivalently:

7 ) x/f=/= 0 for all f e F.
To prove (7), suppose that there exists an element f such that:

(8) AeF and (9) xAA-0
From (9) follows:

(10) VxAVf V(xAfl) O
As F is a filter, (4), (8), and (10) imply that 0 e F, or, what is the
same, that F=L. Then, we would have P=, but this is impossible
by the hypothesis on P. Hence (6) is proved. But conditions (5)
and (6) are incompatible, because F is a maximal filter, hence (1)
and (2) cannot hold simultaneously. Q.E.D.


