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0. Introduction. We shall say that a multiplicative closure
operator V defined on a distributive lattice L with zero and unit is
a Boolean multiplicative closure operator if any closed element under
7 has a complement in .. Examples of Boolean multiplicative closure
operators are the possibility operator defined by Gr. Moisil ([7],
[8])" in (three-valued) Lukasiewicz algebras (see also [3] and [4]),
and the operator D, defined by G. Epstein ([5], Definition 2) in Post
algebras.

The aim of this note is to give a characterization of those dis-
tributive lattices (with zero and unit) that admits a Boolean multiplica-
tive closure operator. In §1 we give the definitions and notations.
In §2 we characterize additive-multiplicative closure operators by
the set of their closed elements and in § 3 we apply the results of
§2 to solve our main problem. Finally, in § 4 we show how some
of the previous theorems can be extended to general multiplicative
closure operators.

These results have some applications in the study of the lattice
theory of many-valued logics. We were inspired in A. Monteiro’s
work on the ideal theory of (three-valued) Lukasiewicz algebras,
that will be published elsewhere.

1. Definitions and notations. Let L be a distributive lattice
with zero 0 and unit 1. we shall consider operators V from L into
L satisfying some of the following conditions:

C0) ro0=0, Cl) a</lu, C2) Px=rru«,
C8) If x<y, then Fa<ry, C4) FV(vy)=Fx\/Fy,
C5) P(@Ay)=FeAVy.

If 7 satisfies C1), C2), and C3) it is called a closure operator (see
[9],[127,[2]), and we shall denote the set of all closure operators
on L by C(L).

If V satisfies Cl), C2), and C4), (or Cl), C2), and C5)), it is called
an additive closure operator ([10], [11], [6]) (or multiplicative closure
operator, [17], [67), and we shall denote by Ca(L)(Cm(L)) the set of
additive (multiplicative) closure operators defined on L. It is clear

1 The references are contained in the second paper.
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all that Ca(L)cC(L) and that Cm(L)cC(L). We define Cam(L)
=Ca(L) N Cm(L).

If A(L) is some class of operators defined on L, we denote by
Ao(L) the set of all e A(L) that satisfies CO0).

We shall say that a subset 4 of L is lower relatively complete
if for all xe L, the set {a € A: x<a} has a least element (i.e., an
infimum belonging to A). We shall denote by R(L) the class of all
lower relatively complete subsets of L that contains the unit 1, and
by Ro(L) the set of all Ae R(L) such that 0¢ A.

It is clear that if Ae R(L), and xz,yc A, then xtAye A. So, if
Ae R(L), A is a sublattice of L if and only if «, y e A implies that
xVyeA. We shall denote by Rs(L)(Ros(L)) the set of all sublattices
of L belonging to R(L)(Ro(L)).

If I is an operator of L into L, we say that ke L is invariant
under V if Fk=Fk, and we denote by I() the set of all invariant
elements under V. If FeC(L), it is usual to call the invariant
elements under /7 closed elements. The range of the operator V is
the set VL={x: x=Fy for some y e L}.

We reproduce here, for further reference, the following well
known theorem ([97], [117]):

Theorem. 1.1. If Ve C(L), then V(L)=IF)e<c R(L), and for all

xe L we have:

(1) Fe=N{ke K: x<k}

where K=1IF). Conversely, if Ke R(L), then (1) defines a Ve C(L)
and moreover, K=IFV)=V(L). V e Co(L) if and only if I¥)e Ro(L);
and V e Ca(L) if and only tf IF)e Rs(L).

2. Additive-multiplicative closures. Let S be a sublattice
of L. An ideal I of L is called an S-ideal in case that for any
xel there exits an element seS such that sel and xz<s. It is
eagy to see that if I is an S-ideal, then the set I,=INS is an ideal
of the lattice S and that I is the ideal of L generated by I, (i.e.,
I={xe L: there exists se I, such that x<s}). Conversely, if I, is
an ideal of S, then the ideal I of L generated by I, is an S-ideal
and I,=INS. So, we have a one-to-ome correspondence between the
S-ideals of L and the ideals of the lattice S. An ideal I of S is

called S-prime in case that P is an S-ideal and P, is a prime ideal
of the lattice S.

2.1. Lemma. If I is an S-ideal contained in the prime ideal
P of L, then there exists an S-prime ideal P such that Ic PCP,

Proof. Setting P,.=PN S, we have that P, is a prime ideal of
S. Hence, the ideal P generated in L by P, is an S-prime ideal,
and obviously, PcP. Furthermore, ,=INScPNS=P,, so IcP.
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The well known fact that in a distributive lattice every proper
ideal is a set-intersection of prime ideals, allow us to prove the
following:

2.2. Corollary. Ewvery proper S-ideal is a set-intersection of
S-prime ideals.

2.3, Corollary. IfseS and xLs, then there exists an S-prime
ideal P such that se P and x ¢ P,

An S-ideal M of L that is not contained in any proper S-ideal
different from M itself is called an S-maximal ideal. It is easy to
see that M is a S-maximal ideal if and only if M,=MnNS is a
maximal ideal of the lattice S. With a standard technique we can
prove that:

2.4, Lemma. If the sublattice S has a unit 1', then any S-
tdeal can be extended to an S-maximal ideal.

It is also clear that any S-maximal ideal is S-prime.

2.5, Theorem. If VeCam(L) and K=I{F), then an ideal I of
L is a K-ideal if and only if xe I implies that Vexe I. In this
case we have that [,=INK=VI={x: x e I}.

Proof. By 1.1, we know that Ke Rs(L), so K is a sublattice
of L. If I is a K-ideal and x ¢ I, then there exists a ke IN K such
that x<k. Hence, Fx<k, and as k belongs to the ideal I, it follows
that Pzel. On the other hand, if I is an ideal of L such that
2 e I implies that Faxe I, it is obvious that I is a K-ideal. The
second part of the theorem is an easy consequence of the first,

Q.E.D.

Our next theorem establish a characteristic property of the set
of all closed elements under an additive-multiplicative closure operator
on a distributive lattice:

2.6. Theorem. Ve Cam(L) if and only if K=IV)e<c Rs(L) and
every K-prime ideal is a prime ideal of L.

Proof. Assume peCam(L). As Cam(L)cCa(L), from 1.1. fol-
lows that Ke Rs(L). Let P be a K-prime ideal. If xAye P, then
by 2.5., we have:

VenVy=V(@wAy)e PNK=P,
but as P, is prime in K,Vxe P, or 'y € P,, therefore, applying again
2.5., we get x€ P or ye P, and the necessity of the conditions is
proved. Assume now that Ke Rs(L) and that any K-prime ideal is
a prime ideal of L. By 1.1., we know that 7 e Ca(L), then we have:

(1) V@Ay)<FaAPy.
So, to prove C5) we need to prove:
(2) Ve A\Vy<V(xAy).

Suppose that (2) is not true. Therefore, by 2.3., there exits a K-
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prime ideal P such that:

(3) P(wAy)eP  and (4) VanFPyelP.

From (3) we have xAyecP, and as P is prime, xc P or yeP.
Applying 2.5. we get that Fee P or Vye P, which contradicts (4),
and the sufficiency of the conditions is proved. Q.E.D.

Now we are going to determine a particular class of K-prime
ideals.

We say that a prime ideal P of L is a minimal prime ideal
if it is a minimal element of the set of all prime ideals of L ordered
by set-inclusion. It is well known that any prime ideal of L con-
tains a minimal prime ideal (we suppose that L has a zero) and
that an ideal of L is a minimal prime ideal tf and only if its
complementary set is a maximal filter (i.e., maximal dual ideal).

2.7. Theorem. IfV € Coam(L)and K=I(V), then every minimal
prime ideal of L is a K-prime ideal.

Proof. Let P be a minimal prime ideal of L. It is clear that
P,=PNK is a prime ideal of K, so we need to prove that P is a
K-ideal, or, taking account of 2.5., that x < P implies that Vxe P,
Suppose that the last proposition is not true, that is, that there
exists an element « ¢ L such that:

(1) xzeP and (2) PxeP
Let F be the complementary set of P (with respect to L). (1) and
(2) are equivalent respectively to:

(8) x2¢F and (4) FPxeF
Let F be the filter generated by the element x and the filter F.
By (8) it follows that:

(5) FcF and F+F
We are going to prove now:
(6) F+L
or equivalently:
(7) e Af#0 for all feF.

To prove (7), suppose that there exists an element f; such that:
(8) fieF and (9) zAfi=0
From (9) follows:
(10) Va AV =P (@ Af)=0
As F is a filter, (4), (8), and (10) imply that 0e F, or, what is the
same, that F=L. Then, we would have P=¢, but this is impossible
by the hypothesis on P. Hence (6) is proved. But conditions (5)
and (6) are incompatible, because F' is a maximal filter, hence (1)
and (2) cannot hold simultaneously. Q.E.D.



