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252. An Algebraic ormulation of K.N
Propositional Calculus

By Kiyoshi IS,K

(Comm. by Kinjir6 Kuuo, .J.A., Dec. 12, 1966)

A K-N axiom system of propositional calculus is given by
J. B. Rosser (2). His axiom system of classical propositional calculus
is written in the form of

a) CpKpp,
b) CKpqp,
c) CCpqCNKqrNKrp,

where functors K, N, C denote conjunction, negation, and impli-
cation respectively.

As well known, we have Cpq=NKpNq. Therefore Rosser’s
axiom system is denoted by two functors K, N as follows:

a’) NKpNKpp,
b’) NKKpqNp,
c NKNKpNqNNKNKqrNNKrp
On the other hand, B. Sobocifiski obtained two new axiom

systems which is equivalent to Rosser’s system (see B. Sobocifiski
[3, 4_). C.A. Meredith gave an axiom system (see C. A. Meredith
and A. N. Prior 1).

In the K-N propositional calculus, there are two rules of
procedure:

1) One of them is the rule of substitution commonly used in
the propositional calculus.

2) The other is the rule of detachment as follows. If NKaN
and a are theses, then / is also a thesis.

From Rosser’s system or KN-system, we can define an algebraic
system as follows: Let x be an abstract algebra consisting of
0, p, q, r, with a binary operation, and a unary operation
satisfying the following conditions:

1) (p,p),p=o,
2) p,(q,p)-O,
3) --( (p, r) ,(r, q)) ,(q,p) =0,
4) Let a, f be expressions in X, then f,a 0 and a 0

imply -0.
Then X is called KN-aIgebra. The condition 4) corresponds to

the rule of detachment.
First of all, we shall prove some general theorems. The Greek
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letters denote expressions in X.
A) / 0 implies ( ) , (’ , cg) O.
Proof. In 3), put p=, q=a, r=/, then -(-(/,/),

(/, cg)) (cg,/) 0. By 4), we have (, /) (/, cg) 0.
Then we have the following
B) Ncg,/9=0,/,cg=0 imply ,=0.
C) Ncg,/=0, /,cg=0 imply /,-/=0.
In A), put cg=(p,p),/=p, /= p, then ...(p,p),p=O implies

(p,.p),(p, (p, p))=o.
By 2), we have

5) p,..p=O.
In 3), put p=...q, r=.r, then

-((-q,-r),((r,q)), (-q,N -q)=0.
By 5), q, q 0, hence

6) ..-.(.. Nq,..r),..(...r,q)=O.
In 3), put p=....-.q, then by 5)

....(....q,r),.-.(r,q)=O.
This expression implies
D) If cg,/9=0, then -/,cg=0, and
5) and 6) imply
7) .......p,p=O.
Let a,=0, put p= -, q= -a, r=a in 3), then

(,a),(a,a)=0,
and we have /3, cg 0. Hence

E) -a,/=0 implies
Let /,a=0, put p=cg, q=/, r=7 in 3), then we have

(a,),(,/)=0.
By E), then (//9) (cg, /) 0.

F) / cg 0 implies ( ) (a ) O.
Suppose that a,/9 0, /, 0, by F), we have

,-,(a,a),(,a)=o,
(o, ,) (a, o) o.

Then by C), (/, ) (cg, /) 0. Hence
G) -cg,/=0, /,=0 imply (/,/),-(cg,/)=0.
In F), if we put a=p, =p, /=r, then by 5),
8) (r,),(,r)=0.
For any expression a, by 7), we have cg,cg-0, hence
H) a- 0 implies cg- 0.
The following propositions are fundamental for our discussion.
I) ,cg=0, /,/=0, 8,/=0 imply
Proot. By H) and /, 0, we have (//) 0. On the

other hand ,/= 0 and 6) imply /, 0. From this and
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--fi,q=0, we have
(,),~(,f)=0

By G). By D), we have
(,a),~ (,f) 0.

Then, by ,f 0, and H), we have (/,) 0, and hence
from 4), ,q=0. Therefore we complete the proof.

9) p,p=0.
Proof. The idea of the proof is due to B. J. Rosser ([2, p. 64).

In 1), put
(,-.,p,p), ,-.,p o.

In 8), pur r= p, r=p, then we have
,-(,’,-p,p),(,-,-p,,..,p)=O,
,-(p,p),(,p,p)=O

respectively. Hence by I), we have
( ) ,-.(p,p),,-,p=O

From 2), we have
( 2 ,.p,(p,p)=O.
(1), (2), and C) imply

p,p=0.
Hence by E), we have p,p=0, which completes the proof.

p p 0 and F) imply
10) (r,p),(p,r)=O.
In 9), put =/, then
J) fi,=0, /,f=0 imply ,=0.
From 10) and 2), we have

( 3 ..(p,q),(q,p)-O,
(4) q,(p,q)=O
respectively. (3), (4), and J) imply

11) q,(q,p)=O.
K) f,a=0, ,/=0 imply (,f),(/,a)=0.
Proof. In 3), put p=q, then

( 5 ) ..(p,r),..(r,p)=O.
On the other hand, f, a 0, ,/= 0, and G) imply
( 6 (,), (,) 0.
Put r /,, p ( f) in (5), then

(( f) ( )) ((,) ( f)) 0.
By (6) and 4), we have

(,f),(7,) =0,
which completes the proof.

Next we shall prove a fundamental proposition.
12) --(p* ..q),(p,q)=O.
Proof. By 7), 9), we have -q,q=0, p,p=O respectively.

Applying K), then
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.(p,. .q),(p,q)=O.
13) (-q p) (-(r, q) (p, r)) =0.
Proof. From 3) and E), we have

(18) ,(Nq, p), (, ,(p, r) ,(r q)) =0.
By 10), we have
(14) (.(p,r),(r,q)),((r,q),...(p,r))=O.
Further, by 12), we have
(15) ( (r q) (p r)) (- (r q) (p, r)) 0.
Hence, by (13), (14), (15), and I), we have

(- (q p)) ( (r q) (p r)) 0,
which completes the proof.

Among the propositions proved above, the propositions 1), 6), 11),
and 13) form an axiom system by B. Sobocifiski 4. The proof of
the converse is given in 4.
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