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1. Riemannian manifolds of constant curvature.
Let M be a connected Riemannian manifold with metric tensor

g. We always assume that the dimension n of M is 3. Let V be
the covariant differentiation with respect to the Riemannian connection
associated with g. The curvature tensor field R is given by

R(X, Y)Z-VzVrZ-VrVxZ-
where X, Y, and Z are vector fields on M.

Then we have
1 R(X, Y) / R( Y, X) O,
2 R(X, Y)Z+R(Y, Z)X+R(Z, X) Y=0 (Bianchi’s 1st identity),
3 (VxR)( Y, Z) / (VrR)(Z, X) / (VzR)(X, Y) 0

(Bianchi’s 2nd identity).
The Riemannian curvature tensor field of M, denoted also by

R, is the tensor field of covariant degree 4 defined by
R(X, X, X, X3-g(R(X, X3X, X).

Then R possesses the following properties"
4 R(X, X, X, X)+R(X., X, X, X3-O,

(1’) R(X, X, X, X)/R(X, X, X, X)-O,
5 R(X, X, X, X)-R(X, X, X, X.),

(2’) R(X, X, X, X,) +R(X, X, X, X)/R(X, X, X, X)-0,
(3’) (VxR)(X, X, X, X)/(VxR)(X, X., X,, X)

/ (VxR)(X, X, X, X)-O.
M is a Riemannian manifold of constant curvature if and

only if
6 R(X, Y)Z= k{g( Y, Z)X- g(X, Z) Y}

where k is a constant.
If R and g are the components of the curvature tensor field

and the metric tensor with respect to a local coordinate system,
then the components R. of the Riemannian curvature tensor are
given by

R.--, Rg .
ml

If M is a Riemannian manifold of constant curvature, then

or
R k(gg gg).
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Theorem 1. M is a Riemannian manifold of constant curva-
ture if and only if R(X, Y)Z is a linear combination of X and
Y for every X, Y, and Z.

Proof. If M is a Riemannian manifold of constant curvature,
then the equation (6) means that R(X, Y)Z is a linear combination
of X and Y.

To prove the converse, let R(X, Y)Z be a linear combination of
X and Y for every X, Y, and Z. Then there exist two tensor fields
a and of covariant degree 2 such that

R(X, Y)Z=a( Y, Z)X/ /(X, Z) Y.
From (1) we have

{a( Y, Z) +( Y, Z)}X+ {a(X, Z)+(X, Z)} Y=0.
Since X, Y, and Z are arbitrary, we get a+=0. Hence we have
( 7 R(X, Y)Z=a( Y, Z)X-a(X, Z) Y.
This, together with (2), implies
8 (X, Y)=(Y, X) for every X and Y.

Let a denote the components of a. Then (7) can be written as
follows:
(7’) R-
or
(7") R ag g.
This, together with (4), implies
( 9 g-g+g-g=0.
Let (g) denote the inverse matrix of (g). Multiplying (9) by g

aand summing with respect to i and l we obtain a-g, where
na- ga. Hence we have

i,l=l

R(X, Y)Z= k{g( Y, Z)X- g(X, Z) Y},
that is,

R k(g g),

where k- is a function on M. This, together with (3), implies
n

,(g,(g
where k, denote the components of the covariant differential
Taking the trace with respect to i and m we obtain

k,g-k,g =0.
Multiplying by g and summing with respect to j and k we have

k, =0.
Hence k is a constant.

Let M be a manifold with torsionfree affine connection and
curvature tensor field R. It is natural to say that M is a manifold
of constant curvature if R(X, Y)Z is a linear combination of X and
Y for every X, Y, and Z.
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:. Khlerian manifolds of constant holomorphic curvature.
Let M be a connected Khlerian manifold with complex structure

J and with Khlerian metric g. We always assume that the real
dimension 2n of M is >=4. Let P be the covariant differentiation
with respect to the Kihlerian connection associated with (J, g).
Then the curvature tensor field R satisfies (1), (2), (3), and
(10) R(JX, JY)-R(X, Y),
(11) R(X, Y)JZ=JR(X, Y)Z.
M is a Kiihlerian manifold of constant holomorphic curvature

if and only if
(12) R(X, Y)Z= k{g( Y, Z)X- g(X, Z) Y

/ [2( Y, Z)JX- 9(X, Z)JY- 29(X, Y)JZ},
where 9 denotes the 2-form defined by 9(X, Y)-g(JX, Y) for every
X and Y and k is a constant.

Theorem 2. M is a Kiihlerian manifold of constant holo-
morphic curvature if and only if R(X, Y)Z is a linear combination
of X, Y, JX, JY, and JZ for every X, Y, and Z.

Proof. If M is a Khlerian manifold of constant holomorphic
curvature, then the equation (12) means that R(X, Y)Z is a linear
combination of X, Y, JX, JY, and JZ.

To prove the converse, let R(X, Y)Z be a linear combination of
X, Y, JX, JY, and JZ for every X, Y, and Z. Then there exist five
tensor fields a,/9, 2,/, and of covariant degree 2 such that

R(X, Y)Z=( Y, Z)X+(X, Z) Y+( Y, Z)JX
+ I(X, Z)JY+(X, Y)JZ.

From (10) we have
{a( Y, Z) + I(JY, Z)}X+ {/(X, Z) + t(JX, Z)} Y

/{I(Y, Z)-a(JY, Z)}JX+{I(X, Z)-(JX, Z)}JY
/ {(X, Y)- (JX, JY)}JZ-O.

Since X, Y, and Z are arbitrary, we get
(13) I( Y, Z)-(JY, Z),
(14) [2(X, Z)-(JX, Z),
(15) (X, Y)- (JX, JY)
for every X, Y, and Z.

From (1) we have
{c( Y, Z) //( Y, Z)}X+ {a(X, Z) +/(X, Z)} Y

+ {( Y, Z) + [2( Y, Z)}JX+ {I(X, Z) / t(X, Z)}JY
/ {(X, Y) /( Y, X)}JZ= O.

Since X, Y, and Z are arbitrary, we get
(6) +-o,
(17) 2+/-0,
and
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(18) (X, Y) /( Y, X) 0 for every X and Y.
Hence we have

R(X, Y)Z--e( Y, Z)X-o(X, Z) Y
+c(JY, Z)JX-c(JX, Z)JY/(X, Y)JZ.

This, together with (2), implies
(19) a(X, Y)-a( Y, X),
(20) (X, Y)=o(X, JY)-o(JX, Y) for every X and Y.

On the other hand, from (11) we have
(21) (X, Y)=o(JX, JY) for every X and Y.
This, together with (20), implies
(22) (X, Y)=-2o(JX, Y).
Hence we have
(23) R(X, Y)Z---a( Y, Z)X-o(X, Z)Y

/o(JY, Z)JX-o(JX, Z)JY-2(JX, Y)JZ.
Let J, 2, and

respectively. Then (23) can be written as follows:

(23’) JJ- .J;J 2-JJ.
a=l a=l a--1

or

(23") Rjk--qgk-g/
a--1 a=l a=l

This, together with (4), implies
2n

(24) g-cg/
a=l a=l

2n 2n

a=l

Multiplying (24)by g and summing with respect to i and 1 and

using (21) we obtain --ng where a- g::. Hence we have
i,l=l

where k- ----Theorem i, we can see th k s a constant.
Let M be a comp|ex manffo|d wth a orsonfree ane connection

which preserves he a|most complex structure ensor . It s nurl
to say that M is a manifold of constant holomorphic curvature if
R(X, Y)Z is a linear combination of X, Y, JX, JY, and JZ.
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