241. Some Theorems on Manifolds of Constant Curvature

By Koichi Ogiue
Department of Mathematics, Tokyo Institute of Technology, Tokyo (Comm. by Zyoiti Suetuna, m.J.A., Dec, 12, 1966)

§ 1. Riemannian manifolds of constant curvature.
Let M be a connected Riemannian manifold with metric tensor g. We always assume that the dimension n of M is $\geqq 3$. Let ∇ be the covariant differentiation with respect to the Riemannian connection associated with g. The curvature tensor field R is given by

$$
R(X, Y) Z=\nabla_{X} \nabla_{Y} Z-\nabla_{Y} \nabla_{X} Z-\nabla_{[X, Y]} Z,
$$

where X, Y, and Z are vector fields on M.
Then we have

$$
\begin{equation*}
R(X, Y)+R(Y, X)=0 \tag{1}
\end{equation*}
$$

(2) $R(X, Y) Z+R(Y, Z) X+R(Z, X) Y=0 \quad$ (Bianchi's 1st identity),
(3) $\quad\left(\nabla_{X} R\right)(Y, Z)+\left(\nabla_{Y} R\right)(Z, X)+\left(\nabla_{Z} R\right)(X, Y)=0$
(Bianchi's 2nd identity).
The Riemannian curvature tensor field of M, denoted also by R, is the tensor field of covariant degree 4 defined by

$$
R\left(X_{1}, X_{2}, X_{3}, X_{4}\right)=g\left(R\left(X_{3}, X_{4}\right) X_{2}, X_{1}\right)
$$

Then R possesses the following properties:

$$
\begin{array}{rr}
(4) & R\left(X_{1}, X_{2}, X_{3}, X_{4}\right)+R\left(X_{2}, X_{1}, X_{3}, X_{4}\right)=0, \\
\left(1^{\prime}\right) & R\left(X_{1}, X_{2}, X_{3}, X_{4}\right)+R\left(X_{1}, X_{2}, X_{4}, X_{3}\right)=0, \\
\text { (5) } & R\left(X_{1}, X_{2}, X_{3}, X_{4}\right)=R\left(X_{3}, X_{4}, X_{1}, X_{2}\right), \\
\left(2^{\prime}\right) & R\left(X_{1}, X_{2}, X_{3}, X_{4}\right)+R\left(X_{1}, X_{3}, X_{4}, X_{2}\right)+R\left(X_{1}, X_{4}, X_{2}, X_{3}\right)=0, \\
\left(3^{\prime}\right) & \left(\nabla_{X_{5}} R\right)\left(X_{1}, X_{2}, X_{3}, X_{4}\right)+\left(V_{X_{3}} R\right)\left(X_{1}, X_{2}, X_{4}, X_{5}\right) \\
& +\left(V_{X_{4}} R\right)\left(X_{1}, X_{2}, X_{5}, X_{3}\right)=0 .
\end{array}
$$

M is a Riemannian manifold of constant curvature if and only if

$$
\begin{equation*}
R(X, Y) Z=k\{g(Y, Z) X-g(X, Z) Y\} \tag{6}
\end{equation*}
$$

where k is a constant.
If $R_{j k l}^{i}$ and $g_{i j}$ are the components of the curvature tensor field and the metric tensor with respect to a local coordinate system, then the components $R_{i j k l}$ of the Riemannian curvature tensor are given by

$$
R_{i j k l}=\sum_{m=1}^{n} g_{i m} R_{j k l}^{m}
$$

If M is a Riemannian manifold of constant curvature, then

$$
R_{j k l}^{i}=k\left(\delta_{k}^{i} g_{j l}-\delta_{l}^{i} g_{j k}\right)
$$

or

$$
R_{i j k l}=k\left(g_{i k} g_{j l}-g_{i l} g_{j k}\right) .
$$

Theorem 1. M is a Riemannian manifold of constant curvature if and only if $R(X, Y) Z$ is a linear combination of X and Y for every X, Y, and Z.

Proof. If M is a Riemannian manifold of constant curvature, then the equation (6) means that $R(X, Y) Z$ is a linear combination of X and Y.

To prove the converse, let $R(X, Y) Z$ be a linear combination of X and Y for every X, Y, and Z. Then there exist two tensor fields α and β of covariant degree 2 such that

$$
R(X, Y) Z=\alpha(Y, Z) X+\beta(X, Z) Y
$$

From (1) we have

$$
\{\alpha(Y, Z)+\beta(Y, Z)\} X+\{\alpha(X, Z)+\beta(X, Z)\} Y=0 .
$$

Since X, Y, and Z are arbitrary, we get $\alpha+\beta=0$. Hence we have (7)

$$
R(X, Y) Z=\alpha(Y, Z) X-\alpha(X, Z) Y
$$

This, together with (2), implies
(8) $\quad \alpha(X, Y)=\alpha(Y, X) \quad$ for every X and Y.

Let $\alpha_{i j}$ denote the components of α. Then (7) can be written as follows:

$$
R_{j k l}^{i}=\alpha_{l j} \delta_{k}^{i}-\alpha_{k j} \delta_{l}^{i}
$$

or

$$
R_{i j k l}=\alpha_{l j} g_{i k}-\alpha_{k j} g_{i l} .
$$

This, together with (4), implies
(9) $\quad \alpha_{l j} g_{i k}-\alpha_{k j} g_{i l}+\alpha_{l i} g_{j k}-\alpha_{k i} g_{j l}=0$.

Let $\left(g^{i j}\right)$ denote the inverse matrix of $\left(g_{i j}\right)$. Multiplying (9) by $g^{i l}$ and summing with respect to i and l we obtain $\alpha=\frac{a}{n} g$, where $a=\sum_{i, l=1}^{n} g^{i l} \alpha_{i l}$. Hence we have

$$
R(X, Y) Z=k\{g(Y, Z) X-g(X, Z) Y\}
$$

that is,

$$
R_{j k l}^{i}=k\left(\delta_{k}^{i} g_{j l}-\delta_{l}^{i} g_{j k}\right),
$$

where $k=\frac{a}{n}$ is a function on M. This, together with (3), implies

$$
k_{, m}\left(\delta_{k}^{i} g_{j l}-\delta_{l}^{i} g_{j k}\right)+k_{, k}\left(\delta_{l}^{i} g_{j m}-\delta_{m}^{i} g_{j l}\right)+k_{, l}\left(\delta_{m}^{i} g_{j k}-\delta_{k}^{i} g_{j m}\right)=0,
$$

where $k_{, m}$ denote the components of the covariant differential ∇k. Taking the trace with respect to i and m we obtain

$$
k_{, l} g_{j k}-k,{ }_{, k} g_{j l}=0
$$

Multiplying by $g^{j k}$ and summing with respect to j and k we have

$$
k_{, l}=0 .
$$

Hence k is a constant.
Let M be a manifold with torsionfree affine connection and curvature tensor field R. It is natural to say that M is a manifold of constant curvature if $R(X, Y) Z$ is a linear combination of X and Y for every X, Y, and Z.
§ 2. Kählerian manifolds of constant holomorphic curvature.
Let M be a connected Kählerian manifold with complex structure J and with Kählerian metric g. We always assume that the real dimension $2 n$ of M is $\geqq 4$. Let ∇ be the covariant differentiation with respect to the Kählerian connection associated with (J, g). Then the curvature tensor field R satisfies (1), (2), (3), and

$$
\begin{gather*}
R(J X, J Y)=R(X, Y) \tag{10}\\
R(X, Y) J Z=J R(X, Y) Z \tag{11}
\end{gather*}
$$

M is a Kählerian manifold of constant holomorphic curvature if and only if

$$
\begin{align*}
R(X, Y) Z= & k\{g(Y, Z) X-g(X, Z) Y \tag{12}\\
& +\Omega(Y, Z) J X-\Omega(X, Z) J Y-2 \Omega(X, Y) J Z\},
\end{align*}
$$

where Ω denotes the 2 -form defined by $\Omega(X, Y)=g(J X, Y)$ for every X and Y and k is a constant.

Theorem 2. M is a Kählerian manifold of constant holomorphic curvature if and only if $R(X, Y) Z$ is a linear combination of $X, Y, J X, J Y$, and $J Z$ for every X, Y, and Z.

Proof. If M is a Kählerian manifold of constant holomorphic curvature, then the equation (12) means that $R(X, Y) Z$ is a linear combination of $X, Y, J X, J Y$, and $J Z$.

To prove the converse, let $R(X, Y) Z$ be a linear combination of $X, Y, J X, J Y$, and $J Z$ for every X, Y, and Z. Then there exist five tensor fields $\alpha, \beta, \lambda, \mu$, and ν of covariant degree 2 such that

$$
\begin{aligned}
R(X, Y) Z=\alpha(Y, Z) X & +\beta(X, Z) Y+\lambda(Y, Z) J X \\
& +\mu(X, Z) J Y+\nu(X, Y) J Z .
\end{aligned}
$$

From (10) we have

$$
\begin{aligned}
\{\alpha(Y, Z) & +\lambda(J Y, Z)\} X+\{\beta(X, Z)+\mu(J X, Z)\} Y \\
& +\{\lambda(Y, Z)-\alpha(J Y, Z)\} J X+\{\mu(X, Z)-\beta(J X, Z)\} J Y \\
& +\{\nu(X, Y)-\nu(J X, J Y)\} J Z=0 .
\end{aligned}
$$

Since X, Y, and Z are arbitrary, we get

$$
\begin{align*}
& \lambda(Y, Z)=\alpha(J Y, Z), \tag{13}\\
& \mu(X, Z)=\beta(J X, Z), \tag{14}\\
& \nu(X, Y)=\nu(J X, J Y) \tag{15}
\end{align*}
$$

for every X, Y, and Z.
From (1) we have

$$
\begin{aligned}
\{\alpha(Y, Z) & +\beta(Y, Z)\} X+\{\alpha(X, Z)+\beta(X, Z)\} Y \\
& +\{\lambda(Y, Z)+\mu(Y, Z)\} J X+\{\lambda(X, Z)+\mu(X, Z)\} J Y \\
& +\{\nu(X, Y)+\nu(Y, X)\} J Z=0 .
\end{aligned}
$$

Since X, Y, and Z are arbitrary, we get

$$
\begin{align*}
\alpha+\beta & =0, \tag{16}\\
\lambda+\mu & =0, \tag{17}
\end{align*}
$$

(18)

$$
\nu(X, Y)+\nu(Y, X)=0 \quad \text { for every } X \text { and } Y
$$

Hence we have

$$
\begin{aligned}
R(X, Y) Z= & \alpha(Y, Z) X-\alpha(X, Z) Y \\
& +\alpha(J Y, Z) J X-\alpha(J X, Z) J Y+\nu(X, Y) J Z .
\end{aligned}
$$

This, together with (2), implies

$$
\begin{equation*}
\alpha(X, Y)=\alpha(Y, X) \tag{19}
\end{equation*}
$$

(20) $\quad \nu(X, Y)=\alpha(X, J Y)-\alpha(J X, Y) \quad$ for every X and Y.

On the other hand, from (11) we have
(21) $\quad \alpha(X, Y)=\alpha(J X, J Y) \quad$ for every X and Y.

This, together with (20), implies
(22) $\quad \nu(X, Y)=-2 \alpha(J X, Y)$.

Hence we have

$$
\begin{align*}
R(X, Y) Z= & \alpha(Y, Z) X-\alpha(X, Z) Y \tag{23}\\
& +\alpha(J Y, Z) J X-\alpha(J X, Z) J Y-2 \alpha(J X, Y) J Z .
\end{align*}
$$

Let $J_{j}^{i}, \Omega_{i j}$, and $\alpha_{i j}$ denote the components of J, Ω, and α respectively. Then (23) can be written as follows:

$$
R_{j k l}^{i}=\alpha_{l j} \delta_{k}^{i}-\alpha_{k j} \delta_{l}^{i}+\sum_{a=1}^{2 n} \alpha_{a j} J_{l}^{a} J_{k}^{i}-\sum_{a=1}^{2 n} \alpha_{a j} J_{k}^{a} J_{l}^{i}-2 \sum_{a=1}^{2 n} \alpha_{a l} J_{l k}^{a} J_{i j}
$$

or

$$
R_{i j k l}=\alpha_{l j} g_{i k}-\alpha_{k j} g_{i l}+\sum_{a=1}^{2 n} \alpha_{a j} J_{l}^{a} \Omega_{i k}-\sum_{a=1}^{2 n} \alpha_{a j} J_{k}^{a} \Omega_{i l}-2 \sum_{a=1}^{2 n} \alpha_{a l} J_{k}^{a} S_{i j}
$$

This, together with (4), implies

$$
\begin{align*}
& \alpha_{l j} g_{i k}-\alpha_{k j} g_{i l}+\sum_{a=1}^{2 n} \alpha_{a j} J_{l}^{a} \Omega_{i k}-\sum_{a=1}^{2 n} \alpha_{a j} J_{k}^{a} \Omega_{i l} \tag{24}\\
& \quad+\alpha_{l i} g_{j k}-\alpha_{k i} g_{j l}+\sum_{a=1}^{2 n} \alpha_{a i} J_{l}^{a} \Omega_{j k}-\sum_{a=1}^{2 n} \alpha_{a i} J_{l k}^{a} \Omega_{j l}=0 .
\end{align*}
$$

Multiplying (24) by $g^{i l}$ and summing with respect to i and l and using (21) we obtain $\alpha=\frac{a}{2 n} g$ where $a=\sum_{i, l=1}^{2 n} g^{i l} \alpha_{i l}$. Hence we have

$$
\begin{aligned}
R(X, Y) Z=k\{g(Y, Z) X & -g(X, Z) Y+\Omega(Y, Z) J X \\
& -\Omega(X, Z) J Y-2 \Omega(X, Y) J Z\}
\end{aligned}
$$

where $k=\frac{a}{2 n}$ is a function on M. By the similar way as in Theorem 1, we can see that k is a constant.

Let M be a complex manifold with a torsionfree affine connection which preserves the almost complex structure tensor J. It is natural to say that M is a manifold of constant holomorphic curvature if $R(X, Y) Z$ is a linear combination of $X, Y, J X, J Y$, and $J Z$.

References

[1] S. Kobayashi and K. Nomizu: Foundations of Differential Geometry. Interscience, New York (1963).
[2] K. Yano: The theory of Lie Derivatives and its Applications. North Holland Publishing Co., Amsterdam (1957).

