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4. A Note on the Projective Modules
over Group Rings

By Koji UcHiDA

(Comm. by Kenjiro SHODA, M.J.A., Jan. 12, 1967)

Let R be a commutative ring with identity, and K its total
quotient ring. Let m be a finite group of order ». We assume that
no prime number dividing 7 is a unit in R. Then, if P denotes a
finitely generated projective Rz7-module, Swan [1, Theorem 8.1] has
shown that K® P is Krw-free under the condition that R is a Dedekind
ring of characteristic zero. In this note we deal with this theorem
in weaker conditions on R. In the following we assume all modules
over Rr, Kr, --- are finitely generated unitary left modules.

Lemma 1. (Brauer, Nesbitt [3, Theorem 30.16]) Let M, N be
Kr-modules, where K is a splitting field of #. Let M, N be corre-
sponding matrix representations. Then M and N have the same
composition factors if and only if the matrices M(x), N(x) have the
same characteristic roots for each x e .

Lemma 2. (Giorgiutti, Rim [2, Lemma 2.2]) Let 4 be an
Artinian ring of which Cartan matrix is non-singular. Then two
projective 4-modules with the same composition factors are isomorphic.

Lemma 3. (Swan, Bass [2, Theorem 27]) Let R be a commutative
local ring with the maximal ideal m, and K its total quotient ring.
Let © be an R-projective R-algebra finitely generated as an R-module,
and we assume that R/m-algebra O/m©O has the non-singular Cartan
matrix. Then for any projective O-modules P and P’, KR P=KR® P’
implies P=P’.

A ring K is called semi-local if K/N is Artinian, where N denotes
the Jacobson radical of K. If K is commutative, it is equivalent
to say that there exist only a finite number of maximal ideals.

Lemma 4. Let K be a commutative semi-local ring, and = a
finite group. Let P be a projective Km-module which is Kzn'-free
for any cyclic subgroup n’ of 7, and we assume that the rank of P
over K is divisible by the order of #. Then P is Kn-free.

Proof. Let N be the Jacobson radical of K. It is known by
[2, Lemma 2.4] that P is Kn-free if and only if (K/N)®cP is
(K/N)r-free. So we may assume that K=K,®---®K, is a direct
sum of the fields., If P=P,®---®P, is the corresponding decom-
position, every P; is K;m-projective and K;w'-free. If we prove that
P, is K;n-free, P is Kn-free because P is K-free and so the ranks
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of P; over K; are the same for all i’s. Therefore we reduce the
lemma to the case that K is a field. But then by Noether-Deuring
theorem [3, Theorem 29.7], P is Krn-free if and only if K'®.P is
K'n-free where K’ is any extension of K. If we put K’ as a
splitting field of m, the assertion follows from Lemmas 1 and 2.

Remark. [3, Lemma 78,2] states that a Kz-module is Kz-free
if and only if it is Km,-free for each p and each p-Sylow subgroup
w,, where K is an algebraic number field. But this is not true.
Let 7 be a cyclic group of order 6 generated by . Let K be an
algebraic number field containing all the 6-th roots of unity. Then
Kn=3>K;, where the sum runs over all the 6-th roots { of unity,
and o acts on K,;=K as multiplying {. Let M=K, +K,+K,+K_,+
K_2+K_.,, where w is a primitive 3-rd root of unity. Then M is
free over Sylow groups but not Krn-free.

Lemma 5. Let 7 be a cyclic group of order n=p*m, (p, m)=1,
and «,, 7, be subgroups of = of orders p° m respectively. Let &
be a field of characteristic p, and containing all the m-th roots of
unity. Then, if f,,---, f.. denote all the primitive idempotents in
kr,, all kxfs are indecomposable km-modules and they have the
same rank over k.

Proof. krnf,=kr,®.kx,f;=kr, as a kr,module, so it is inde-
composable because kr, is a local ring. It is also trivial about the
ranks.

Theorem 1. Let R be a commutative ring with identity such
that any zero divisor is in the Jacobson radical, and also we assume
that the total quotient ring K of R is semi-local. Let 7 be a finite
group of order n. We assume that any prime number dividing » is
nonunit in R. Then for any finitely generated projective Rr-module
P, K®.P is a free Km-module.

Proof. Let p be a prime dividing 7, and p a maximal ideal of
R which contains p. Ry denotes the localization of R at p. Then
Ry®:P is Rym- therefore Rym,-projective for a p-Sylow subgroup «,
of 7. But Rym, is a local ring because pRym, is contained in the
Jacobson radical, and (R/p)x, is local. So Ry®rP is Rym,free, and
especially K®zP=K®p,Rp®:P has a rank divisible by the order of
7,. (The assumption on R guarantees that K is also the total
quotient ring of Ry.) Then the rank of K®:P is divisible by n=.
By Lemma 4 we see that we need only to prove the theorem in the
cyclic case. Now we assume that = is a ecyeclic group of order
n=p'm, (p, m)=1, and =,, 7, denote the subgroups of orders p?, m
respectively. We proceed by the induction on the order of =. If
n=(1), K®P=KQ®p (Ry®:P) is K-free (p is any maximal ideal of
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R). We assume that KR P is Kr,-free. Let p be a maximal ideal
containing p. Then by Lemma 3 Ry®:P is Ryrm,-free. By [2,
Lemma 2.47, Ry®:P is Ryn-free if and only if (Rp/pRy)® P=(R/p)R P
is (R/p)nr-free. We put k=R/p. By Noether-Deuring theorem we
may assume k contains all the m-th roots of unity. Then by
Lemma 5, k®zP=3%a;-krf; is a decomposition to the indecomposable

components, where Ja,- denotes the number of components isomorphic
to knf;. By considering the ranks over k, all a;’s are equal as
k®gP is krm,-free. Therefore we have k@ P=a-kw, and this
completes the proof.

Examples. R satisfies the assumptions of the theorem in the
following cases.

1) R=A[X, X,, ---] is a polynomial ring over the ring A of
algebraic integers.

2) R is a ring such that no printe*p | » is a unit, and any zero
divisor is nilpotent. Then K is a local ring.

Next we assume that R is a noetherian ring. Then its total
quotient ring is semi-local by [4, IV, Corollary 8 of Theorem 117.
So we need only the trivial conditions on R by taking Serre’s theorems
[5] into account, i.e. we have Theorem 2 below.

Lemma 6. Let R be a commutative indecomposable noetherian
ring. Let w be a finite group of order %, and any prime factor of
% be non-unit in B. Then Rr is also indecomposable.
~ Proof. We assume that Rr=A®B is a decomposition to the
left ideals. Let p be a prime factor of =, 7, be a p-Sylow subgroup
of m, and p be a prime ideal containing p. Then Ryr=A,® By, and
Ay is Rym,-projective, so Rym,-free. Therefore its rank over R isa
multiple of the order of 7,. As we assumed that R is indecomposable,
its rank depends neither on p, nor on p [5, Proposition 4]. Hence
it is divisible by the order of @, and A must be equal to Rrx.

Lemma 7. Let R be a commutative indecomposable noetherian
ring, and K be its total quotient ring. Then for any projective
R-module P, K®;P is K-free.

Proof. Put K=K, ®---®K,, where K is indecomposable ideal of
K. Then K,®:P is K;-free by [5, Proposition 6]. So we need only to
prove that the rank of K;®:P over K, does not depend on 7. We
take a prime ideal m; of K; for each ¢. Then p,=(K,®---®K;,_®
mAK, . ®---®K,)NR is a prime ideal of R, and there exists a
monomorphism of R,= Ry, into K, m, by 2—we;, where e, is the identity
element of K;. As R; is alocal ring, R;®:P is R;-free. So its rank
is equal to that of K;m ®:P, and then equal to that of K,®:P.
As R is indecomposable, the rank of R;®:P is independent of %, so
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is the rank of K;®g:P.

Lemma 8. Let R be a commutative indecomposable noetherian
ring. Let 7w be a finite abelian group of order », and any prime
factor of n be non-unit in R. Let K denote the total quotient ring
of R. Then for any projective Rmr-module P, KQ P is Kn-free.

Proof. Let Q@ be the total quotient ring of Rx. Then
RrcKrcQ holds, and Q®;.P is Q-free by Lemma 7. By consider-
ing the isomorphism K®P=Kr®:.P, it suffices to show the latter
is Krn-free. Put Kn=K ®---®K,, where K; is indecomposable
ideals. Then Q=Q® . Kr=>Q®«.K; holds, and no Q® ..K; is zero

because Knc Q. In the direct decomposition K7 ® . P=K,® . P®
o e @K, Rz P, each K;®z.P is K;-projective, so it is K;-free because
K; is indecomposable semi-local ring. The rank of which over K is
equal to that of Q®x.K:QrP over QRx.K;. But the latter is
independent of ¢, because Q®z.P=>Q® x.K;®x.P is Q-free. Hence

KQpP=Kn®g.P is Kn-free.

Theorem 2. Let R be a commutative ring with identity which
is noetherian and indecomposable. Let K denote its total quotient
ring. Let 7 be a finite group of order »#, and we assume that any
prime factor of » is non-unit in R. Then for any finitely generated
projective Rmw-module P, K® P is a free Kr-module.

Proof. By Lemma 8, K®.P is Kn'-free for any cyclic subgroup
n’ of . So we need only to prove the last assumption of Lemma
4, Let p be a prime factor of n, and p be a prime ideal containing
p. Then Ry®geP is Rym,free as in the proof of Theorem 1, where
m, is a p-Sylow subgroup of #. Let K, denote the total quotient
ring of Ry. Then Ky;®gP is Kyr,-free. There is a natural homo-
morphism of K into Kp. So the rank of K®;P over K is equal to
that of Ky®:P=Ky®K®zP over Kp. The rank of K,®:P is
divisible by the order of ,, so is the rank of K®.P. As p is any
prime factor of », the rank of K®.P is divisible by the order of
. Therefore we complete the proof of the theorem by Lemma 4.
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