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1. Let G, be the subgroup of GL(n + 1, R) consisting of
elements which leave invariant the quadratic form x+xi +-.. / x,
and G+ be the connected component of G,. Let X be the hyperboloid
of one sheet in R"+ with the equation x]-x[ x--1. G,
naturally operates on X and the measure on X defined by dx

dx dx, is invariant under the action of G. Let L(X) be the

Hilbert space of functions on X which are square integrable with
respect to this measure. Then we get the unitary representation
of G+ on Ls(X) defined as follows: (zr(g)f)(x)--f(xg), g e G+, f L(X),

x e X. We denote the corresponding representation of the universal
enveloping algebra of Lie algebra of G+ also by zr. In this note we
decompose into direct sum of irreducible representations. In the
following, we use the notations defined in R. Takahashi lJ Chap.
I, 1, 2 without further reference.

2. For any complex number s we define the representations
(U’, JO of G+ as follows:

Let H be the linear space of C- functions on K which are
invariant under left translations of M and (U’(g)f)(k)=e-’t(,)f(kg),
fJ(, where kg and t(k, g) is defined uniquely by the relations
kg-at(,)n kg, at(,) e A, n e N, and kg e K. In the following for
special value of s we define the positive (in general not definite)
inner product ( )o in J( so that U, becomes unitary, and we
get unitary representation (U,, J(,) where J/o is the completion of
J( with respect to the norm II il, defined by inner product ( ),.

When s- _n-1 +ip, p R, we define for any
2-dk where dk is the normalized Haar measure of K. For any, J@eJ(, and s,""(Res<-n-l) we put
\ /2

where C, I/-F(- s) and v- (1, 1, 0, -, 0).
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The inner product (x, y is defined as (x, y-Xoyo-xy
for any two vectors x-(Xo, x, ..., x,) and y-(Yo, Y, "", Y,). By
the analytic continuation regarded as the function of s,
becomes a meromorphic function on the whole s-plane and has simple
poles at s-0,1,2,-.- and it is proved that I,(o,o)>0 for
-(n-1)s0 and res. (-1)-I,(p, o)>0 for l-0, 1,2, .--. We put

(o, @). I,(p, @) when (n- 1) < s<0 and (o, @). res. (- 1)-I,(o,
when -l-0,1,,-.-. Then it is proved that (U,,J/’,)
_-1 or -(-1)<<0 or -0, 1 ., --.) are unitary representa-.

tions and are irredueible when .. When -., every (U,
for -0, 1, ., is deeomposed into the direct sum of two irredueible
representations and other (U., H.) are irreducible. (For details see
Takahashi lJ and Gelfand-Graev-Vielenkin 1.)

:. We denote by Cy’(X) the space of indefinitely differentiable
functions on X with compact support. For any f C’:(X) and s e C,
(Re s> -1) we define .i(f), c(f) as follows:

,i(f)(k)- I(,,>of(Xk) v, x’dx,

c.(f)(k)- _l,,,)<of(xk) {-(v, x}’dx,
where v-(l,-1, 0,---, 0). Then we get the following.

Lemma. a) For any fixed k e K, ff,(k)(i-1, 2) is continued to
a meromorphic function on the whole s-plane which has simple poles
at s--l, -2, ....

b) For a fixed s (s-1,-2,--.)
(Tr(g)f)-- U.(g)F:(f), i-1, 2, g e G+.

c) Let res. .(f) be the element of J( defined by (res .(f))(k)=- =-
res. (ft.(f)(k)), then

res. ffZ.(zc(g)f)- U (g)(res. .(f))
=-i =-i

i-1, 2; k-l, 2, ---, ge G.+.
We define for anyfe C(X)ands, (Res- _n-12 ors--3",

>j>+l or s-l-O, 1 2 ) H(f)eJ((i-1 2) as H’-(,,-,t,.+,(f),
,._,t+,(f), p e R, i 1,2, HS(f) H_(f) res. F.l(f), j 1, -.

I--11’ HI(f)- H(f)-)(f).

Then we have the following.
Theorem 1. For any fe CT(X)we have the following equality
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+ ()[I ;(f)

where o and are defined as follows:
When n-2m,

w(p)-(2-’(m-1)!)-pth p(p+ -) (p+ ). .(p+ (m- )),
.(-j)-(2"-=-(m )i)-(n-2j- )(j- )l(n- 2-j)i(j- ,...,m-)

.(t) (2"-=’-(m- )i)-(2t +n- )_(t+n-2)

when n-2m+ 1,
o.(p) (2"+(2m-) !)-p( + p*)... {(m- )*+

,(-j)-(2(2m-1)[)-(n-2j-1)(j-1)](n-2- j)[ j-l, ---, m-l,

.(t)- (2u(2m- )[)-(2t +n-) (t +n-2).
4. Let A--(9), where 9 is defined in R. Takahashi [1 p.

327. A is the Casimir orators on X which is known to
essentially self-adjoint on L*(X). Let P0-(0, 1,..-, 0)e X, G,_
the subgroup of G, consisting of elements which leave invariant the
point P0, and let X’- {x e X, x 1}.

Our proof of theorem 1 dends on the following two theorems.
Theorem 2. A. For any 2eC(Im20) there is a unique

distribution T on X satisfying the following three conditions.
1. T is invariant under G,_ that is, T((g)f)-T(f) for any
g e G._, fe CT(X).
2. (A-2)T,-(po) ($(P0) is the Dirac measure concentrated to p0)

3. When we put s-n-1+(n-1) + 42 (square root is taken so that
2

its real part is positive) lira sup I[ x, ]’T ] (It is proved that, T,

tisfying conditions 1, 2, coincides in X’ with analytic function
dending only on x.)

B. (A-2)-, resolvent of A, is expressed by T as follows:
((-2)-f)(x)- T(=(,.,f), x e X, fe CT(X).

Here g, is any element in G, such that pog,-x.
Let F(x) a function defined on X- such that for any ? e C(X)

the integral F(, s)- F(x)(x) x]-1 " dx converges absolutely for

s whose real rt is sufficiently large, and F(, s), as a function of
s can continued analytically to the neighurhood of s-0 and at
s-0 has Laurent expansion

F(, s)- + g- 1 (F, )+ g0(F, )+---.
8
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Then we define
(Fin. F)()-o(F, ) and
(Res. F)()-t_(F, ).

Theorem 3. The distribution T, defined in Theorem 2 has the
following expression:

Case I. n-2m+l.
T(f)- (fin. ,,F)(f)

where F is a function defined as follows:
,,F(x) 0 when z,. < 1
,,F(x) ( 2+"(s m) i sin 7(s m))-d {( x.+ iv/1 x])’-- ( x.+ iV’l x])-’-} when x,. I( 1

dx
(s is defined in Th. 2, 0<arg (- x,. + il/1 x]) <)

dF(x)-(-2’+(s-m)7’) -(x.+ l/x]-l)-(’-) when

Case II. n-2.

T(f) (fin. ,/)(f) I f(x)(x).dx
Case III. n-2m, m>1.
T(f) (fin. ,,F)(f)

+(-1) -2 2-7:- 1-I{2k(2k+l-n)-}
k=l, 4,kl F(m- 1)

=o F(m-- 1 "k) (2/(2/+ 1 n)

(res. (] x]--1
where is a characteristic functions of subset R of X defined as
follows:

R-{x e x,
And is defined as follows.

,(x)=(_(27),sinTs)_( d’-

dx- Q,_, (- x,) when x,. < 1

Q,_,,]( x,, + iO)
dx-d- i0)} w.hen x I<+( dx- Q._,)(-x,,-

F() (- (.)")- cot r.
d"-

,_,, (,.) when ,.> 1.

( is a Legendre function of second kind.)
When we substitute the expression of (A-)- obtained by

Theorems . and to the well-known formula
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f(x) i*dx
1

we get Theorem 1.
The detailed proof of this note will appear elsewhere. When

n=3, our problem is solved with different method by Gelfand-Graev
[1 in more refined form (see also Gelfand-Graev-Vielenkin 1).
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