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22. On a Sum Theorem in Dimension Theory

By Nobuo KIMURA
(Comm. by Kinjir5 Kuu(I, M.J.A., Feb. 13, 1967)

The present paper deals primarily with the sum theorems for
the large inductive dimension of totally normal spaces. In this
connection C. H. Dowker established in 2’a sum theorem which
is stated as follows: Let {A,} be a countable number of closed sts
in a totally normal space and let Ind A_<n, i- 1, 2, .... Then

Ind (..,A,)n. Corresponding to this result, we established in

the following theorem. Let {A a<D} be a locally finite closed
covering of a totally normal and countably paracompact space X
and let Ind A<=n for each . Then Ind X<=n.

Our present object is to show that the countable paracompactness
condition in the above theorem is redundant. Indeed, our main
theorem reads as follows: Let {A a<D} be a locally finite collection
of closed sets in a totally normal space X and let Ind A.<n for
each,. Then Ind (_A,) <= n. Fortheproofofour theorems we

shall need some of Dowker’s results.
1. Preliminary theorems due to C. H. Dowker. A normal

space X is called totally normal (2, 4) if each open set G is the
union of a collection {G}, locally finite in G, of open Fo sets of X.
The following theorems are due to C. H. Dowker and they form the
basis of a proof for our theorems.

Theorem 1. (2, 4.1, 2, 4.2, and 2, 4.6). Every perfectly
normal space or every hereditarily paracompact space is totally
normal and every totally normal space is completely normal.8)

The converse of Theorem 1 is not true as is observed by the
well-known Bing’s examples (13).

Theorem 2. (2, 4.73). The total normality is hereditary;
that is, every subspace of a totally normal space is also totally
normal.

Theorem 3. (2, Theorem 2). In a totally normal space X
let A X. Then Ind A<_ Ind X.

Theorem 3 is referred to as "the subset theorem".

1) Throughout the paper by a space we mean a Tl-space.
2) Ind X means the large inductive dimension of a space X defined inductively

in terms of closed sets. For a detailed definition, see [2].
3) Some authors refer to "completely normal" as "hereditarily normal" (e.g.

[53).
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Theorem 4. (2, 2.2). If A is a closed subset of a completely
normal space X and if Ind A=<n and Ind (X-A)<=n, then Ind

2. Theorems. In this section we list our theorems and their
corollaries the proofs of which will be given at section 3.

Theorem 5. Let {A !<72} be a locally finite closed covering

of a totally normal space X and let Ind A<=n for each . Then
Ind X_<_ n.

If X is a hereditarily paracompact space, we have more generally
the following theorem which is a generalization of [4, Theorem 5, 2].

Theorem 6. Let {A a<} be a locally countable closed
covering of a hereditarily paracompact space X and let Ind A<__n
for each . Then Ind X<__n.

In view of Theorems 2 and 3, the following is a direct consequence
of Theorem 5.

Corollary 1. Let {A a<2} be a locally finite collection of
closed sets in a totally normal space X and let Ind A<=n for each
a. Then Ind , ’)A =<n.

From Corollary 1 and from Dowker’s countable sum theorem we
obtain

Theorem 7. Let {A4 a<9, i- 1, 2, .--} be a a-locally finite
collection of closed sets in a totally normal space X and let

IndA<=n for each i and a. Then Ind ] ]A=<n.
4=1

By virtue of Theorem 1, as an immediate eonsequenee of Theorem
7, we obtain

Corollary 2. Let {A4 ez<, i- 1, 2, ...} be a a-loeally finite
collection of closed sets in a perfectly normal or hereditarily
paracompact space and let IndA__<n for each i and re. Then

Ind, ,A=<n.
4=1

3. Proof of Theorem ;. We proceed by induetion on n.
Since the theorem is trivially true for n--1, we have only to verify
it for n assuming it true for k<n. Let FG with F closed and
G open. To eomplete our induction we should find an open set W of
X such that FWG and Ind W_<_n- 1. Let F F-A and
G-G.A. Then F and G are elosed and open, in A, respectively,
and FG. All F will be assumed to be non-empty without loss
of generality. In what follows, "A-open" and "A-elosed" are used
in plaee of "open in A" and "elosed in A" for the sake of simplicity.
Now suppose that for every B<ez an A-open set Wa has been so

4) We use frequently the symbols "." and "/" instead of "" and "O",
respectively.

5) W stands for the boundary of W, W-W-int W.
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constructed that
( 1 ) ( ) Ind W__<g-1,

(ii) F 14TG,
(iii) W-At- Wr.A for every 7(a.

Sinee ITIT.A--W by virtue of the elosedness of A, we obtain
W- -W. From A-elosedness of W it follows that

and henee W are elosed in X. Let A-A-W. Then
by (iii)A W is A-elosed. Hence A- W+F is -elosed.

On the other hand, we obtain A- W+(G-A is -on.
< k < I

In fact, sinee-A is naturally -open, it suees to show that
every point A,- W is an -inner point of the given set. For
this purpose let A, A, .-., A with eaeh (a be all the sets
whieh contain . Then has a neighborhood V() such that
V().{A[,-I, 2, ..., k, <a}-O. By means of (1) (iii)
we can obin W-W W. Henee has a neighborhood
U() such that U()-Ac W, -1, 2, ..., k. Sinee e W
we have e A.-,. Again has a neighborhood W() such that
A- W()c,. Let N()- V()-U()-W(). From the definition of
V(), U(), and W() it readily follows that .N()cA.N()

< <
IndIndA, here m n pen se W sueh h< I

< <

where 0W- W.A- W. his satisfies ha
( S ) ( ) cWc and W is Apen,

(iii) for every 5 Z-A- Z-
he roof of (S) (i) is immediate from he fae ha an A-oen
is a he same ime an A-oen e. () (ii) is hown as follows.
By calculation we have

=(W- W).A+ W..N,W =oA+W.N.W. By the
D<a

subset theorem and the induction hths we obtain

X IndX  and,  ince
k <a / <a
W-W is closed in X, it is a priori closed in W. Since

<

6) aWa means Aa-boundary; i.e., W= Wa.Aa-Wa in view of Aa-openness
of Wa. Notice that in general !W=/=aW.
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DW-DW.,DW#c W, Theorem 4 is applicable and we obtain

Ind W Ind (0W+ W- Wa<=n- 1. This proves (3) (ii).
\ _

ho.< l

Now (3) (iii) remains to L S wn. First, by (2)(i), Wr.Ac W.Ar
is obvious. Hence we have only to prove the converse, Wr-AD W-A.
Since from (2) (i) again it follows that W.ArcA.I W, any point

x e W,.Ar is contained in Wa for some B<. For t<lis /9 we have
x e At. W. However, by virtue of (1) (iii), we have At- Wa-Aa- Wr,
and hence we get x e Aa. Wrc Wr. Therefore x e Wr- Wc Wr.A
and this shows that Wr-AD W,-Ar.. This completes the proof of
(3) (iii). By transfinite induction we get finally

Lemma. For any <9 there is an A-open set W such that
(i) W.cG ,
(ii) Ind,W,__<n-1,
(iii) W-Aa- Wa-A for every B<?2.
We now turn to the proof of Theorem 5. Let W=, W,. We

shall assert that the set W just defined is actually an open set as
desired at the beginning of this section. First, to show the openness
of W, let x e W. Since all the A’s which contain x are at most
finite in number, there are e <a,.< <a such that x e A,, i- 1,
2, ..-, k and x e A otherwise. Since , {A aCa, ,., ---, a} is
closed, x has a neighborhood V(x) such that V(x). {A, a.a., ce2,
.., }-0. While (iii) in the above lemma shows that W,, W,.., W and only these contain x. On account of the A-openness

of W we can choose, in X, a neighborhood U(x) of x so that
U(x). A,, W,,. Let W(x)- V(x). U(x). U,.(x) U,(x). Then
W(x)c W. In fact, if some y W(x) were not in W, y would belong
to Ar for some 7 with 7, i= 1, 2, .--, k. This is impossible since
V(x).Ar-O by such 7. Hence W is open. There remains only to
prove Ind! W__<n- 1. For this purpose we first prove !Wc,!W.
This is shown as follows:
W=, W-int] W,--, W,-, W,c(W-W,)-,!,W,.

By the subset theorem we obtain Ind W<Ind 3W. Now the

inequality Ind W_<_n- 1 follows from the induction hypothesis.
a<O

This completes the proof of Theorem 5.
We are indebted to Prof. K. Morita for his valuable advice.
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