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22. On a Sum Theorem in Dimension Theory

By Nobuo KiMURA
(Comm. by Kinjiré KuNUGI, M.J.A,, Feb. 13, 1967)

The present paper deals primarily with the sum theorems for
the large inductive dimension of totally normal spaces.” In this
connection C. H. Dowker established in [2]° a sum theorem which
is stated as follows: Let {A;} be a countable number of closed sets
in a totally normal space and let Ind A»<n,:1=1,2,.... Then

Ind (G A,.)gn. Corresponding to this result, we established in [3]

the f(;flowing theorem. Let {A,|a<2} be a locally finite closed
covering of a totally normal and countably paracompact space X
and let Ind A,<n for each a. Then Ind X<n.

Our present object is to show that the countable paracompactness
condition in the above theorem is redundant. Indeed, our main
theorem reads as follows: Let {A,|a<2} be a locally finite collection
of closed sets in a totally mormal space X and let Ind A,<n for

each . Then Ind( UA.)<n. For the proof of our theorems we
a<lQ

shall need some of Dowker’s results.

1. Preliminary theorems due to C. H. Dowker. A normal
space X is called totally normal ([2, §4]) if each open set G is the
union of a collection {G,}, locally finite in G, of open F, sets of X.
The following theorems are due to C. H. Dowker and they form the
basis of a proof for our theorems.

Theorem 1. ([2, 4.1], [2, 4.2], and [2, 4.6]). Ewvery perfectly
normal space or every hereditarily paracompact space is totally
normal and every totally mormal space is completely normal.”

The converse of Theorem 1 is not true as is observed by the
well-known Bing’s examples ([1]).

Theorem 2. ([2, 4.7]). The total mormality is hereditary;
that is, every subspace of a totally mormal space is also totally
normal.

Theorem 3. ([2, Theorem 27). In a totally normal space X
let AcX. Then Ind A<Ind X.

Theorem 3 is referred to as “the subset theorem”.

1) Throughout the paper by a space we mean a Ti-space.

2) Ind X means the large inductive dimension of a space X defined inductively
in terms of closed sets. For a detailed definition, see [2].

8) Some authors refer to “completely normal” as “hereditarily normal” (e.g.

[6D.
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Theorem 4. ([2, 2.27). If A is a closed subset of a completely
normal space X and if Ind A<n and Ind (X— A)<n, then Ind X<n.

2. Theorems. In this section we list our theorems and their
corollaries the proofs of which will be given at section 3.

Theorem 5. Let {A,|a<2} be a locally finite closed covering
of a totally mormal space X and let Ind A,<n for each a. Then
Ind X<n.

If X is a hereditarily paracompact space, we have more generally
the following theorem which is a generalization of [4, Theorem 5, 27.

Theorem 6. Let {A,|a<2} be a locally countable closed
covering of a hereditarily paracompact space X and let Ind A,<n
for each . Then Ind X<mn.

In view of Theorems 2 and 3, the following is a direct consequence
of Theorem 5.

Corollary 1. Let {A.|a<2} be a locally finite collection of
closed sets in a totally normal space X and let Ind A,<n for each
a. Then IndE"A =n.

From Corollary 1 and from Dowker’s countable sum theorem we
obtain

Theorem 7. Let {A;,|a<2,i=1,2,.--} be a o-locally finite
collection of closed sets in a totally mormal space X and let

Ind A, <n for each i and . Then IndS ST A, <n.

=1 a<lQ
By virtue of Theorem 1, as an immediate consequence of Theorem

7, we obtain

Corollary 2. Let {A;,,|a<®2,1=1,2, ---} be a o-locally finite
collection of closed sets in a perfectly normal or hereditarily
paracompact space and let Ind A;,<n for each i and a. Then

Ind 2 2 A .

=1 alQ

3. Proof of Theorem 5. We proceed by induction on =n.
Since the theorem is trivially true for = —1, we have only to verify
it for » assuming it true for k<n. Let FcG with F closed and
G open. To complete our induction we should find an open set W of
X such that FcWcG and IndBW¥<n—1. Let F,=F-A, and
G,=G-A,. Then F, and G, are closed and open, in A,, respectively,
and F,cG,. All F, will be assumed to be non-empty without loss
of generality. In what follows, “A.-open” and “A,-closed” are used
in place of “open in 4,” and “closed in A,” for the sake of simplicity.
Now suppose that for every B<a an Ag-open set Wj has been so

4) We use frequently the symbols «-” and “+” instead of “N” and “U?”,
respectively.
5) BW stands for the boundary of W,8W=W—int W.



100 N. KIMURA [Vol. 43,

constructed that
(1) (i) Ind®BWo<n—1,
(i) Fpec WeCGy,
(iii) Wy-A,=W,-A; for every v<a.
Since WB-Aﬂ= W, by virtue of the closedness of A, we obtain
By We=Wy— W,. From Ag-closedness of B,W, it follows that B, W,
and hence 2535 Wy are closed in X. Let A2=A,—>)B;W;. Then

by (iii) A,- 2 W, is Al-closed. Hence A,- E We+ %’: is Aj-closed.

On the other hand, we obtain A4,- E We+( G, EAB) is Aj-open.
In fact, since G, 2 Ag is naturally Aﬂ-open it suﬂices to show that
every point x e A,- 2‘, W; is an Aj-inner point of the given set. For
f<a
this purpose let A,, 4,, ---, A, with each B;<a be all the sets
which contain . Then « has a neighborhood V(x) such that
V(@) 31 {4s|B+#Bs, 1=1, 2, °-~,k,B<a}=O. By means of (1) (iii)
we can obtain xe Wy - Wy, - --- - Wy, . Hence x has a neighborhood
U(z) such that U(x)-A4sC WB‘,z—l 2, .-+, k. Since meZ WeCG,

we have x€ A,-G=G,. Again  has a nelghborhood W(zx) such that

A, - W(x)cG,. Let N(x)=V(x)-U(x)- W(x). From the definition of

V(x), U(x), and W(x) it readily follows that A%-N(x)cA,-N(x)

S (Ga—z Ap) and this shows that 4,33 Wp+(Ga—2 A,,)
<a <a

is Alopen. Since A,-33Wpt+F.CAu3] W,,+(G zA,,) and
Ind A<Ind A,<m, there 1s an Al-open set W such that
(2) (i) AeSIWptF.CW.CA.- 2W,,+(G zA,,)
(ii) Ind?B,,oWaSn 1,
where B, W,= W, -A°— W,. This W, satisfies that
(8) (i) F,cW,cG, and W, is A,-open,
(ii) IndB,W.<n-1,
(iii) for every vy=a W,-A,=W,-A,.
The proof of (3) (i) is immediate from the fact that an A%-open set
is at the same time an A,-open set. (8) (ii) is shown as follows.

By calculation we have B,W,=%8,W,.-A,=B, Wa-(A2,+2‘. B, W,;)
=(W,—W,)- A" +(§B W, E%pr>—%,,oA +%8B,W,- EQBBWﬂ By the
subset theorem and the induction hypothesns we obtain

Ind (.SB W, E%,;W,,)<Ind§:,‘%pwp<n 1. On the other hand, since
B, W, EQSB W, is closed in X, it is a priori closed in B, W,. Since

6) BsWps means Ag-boundary; i.e., BgWp= Wg-Ag— Wp in view of Ag-openness
of Wg. Notice that in general SWg+BgWp.
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B W,.— B, W, ~pz B W B, W., Theorem 4 is applicable and we obtain
<a

Ind B, W,=1Ind (SB W.+B,W,-> 1B, Wf,) n—1. This proves (3) (ii).

Now (8) (iii) remains to be shoi;vn First, by (2) (i), W,-A,C W,- A4,
is obvious. Hence we have only to prove the converse, W,-A,D W,-A,.
Since from (2) (i) again it follows that W,-A,C A,->) W,, any point
xe W,-A, is contained in W, for some 8<a. For “this B we have
xe A,- We. However, by virtue of (1) (iii), we have A,- Wg=A,- W,,
and hence we get xe Ag- W,c W,. Therefore xe W,-W,C W, A
and this shows that W,-A,> W,-A,. This completes the proof of
(8) (iii). By transfinite induction we get finally

Lemma. For any a<® there is an A,-open set W, such that

(i) F.CcW,CG,,

(ii) Ind B, W,<n-1,

(iii) W,-Ag=W;-A, for every B<Q.

We now turn to the proof of Theorem 5. Let W=3>\W,. We

a<g2

shall assert that the set W just defined is actually an open set as
desired at the beginning of this section. First, to show the openness
of W, let xe W. Since all the A,’s which contain  are at most
finite in number, there are a,<a,< --- <a, such that xe 4,,, =1,
-k and x¢ A, otherwise. Since >} {4.|a#a, a, -+, a;} is

closed, z has a neighborhood V(z) such that V(x)-3> {4,|a#a, a,

-, a,}=0. While (iii) in the above lemma shows that W,, W,,

s We, and only these contain x. On account of the A, -openness
of W,, we can choose, in X, a neighborhood U x) of x so that
Ufx) A, ,CW,.. Let W(x)=V(®) U(x)-Ufx)- --- -Us(x). Then
W(x)c W. In fact, if some y e W(x) were not in W, y would belong
to A, for some v with vy+a;,7=1,2, ---, k. This is impossible since
V(x)-A,=0 by such v. Hence W is open. There remains only to
prove IndBW<n—1. For this purpose we first prove BWcC XLSB w..
This is shown as follows: <

BW= EW—mtEW EW EWCE(W W)= E?B w..
By the subset theorem we obtam Ind 23W<Ind223 w.. Now the
inequality Ind 1B, W.<n—1 follows from the mductlon hypothesis.

This completesKt‘ile proof of Theorem 5.
We are indebted to Prof. K. Morita for his valuable advice.
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