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A family of sets V of an abstract space X is called a prering
if V is nonvoid and A,, A, V implies A,NA,e V and there exist
disjoint sets B,, ---, B, € V such that A)\A4,=B,U --- UB,.

A nonnegative function V on a prering is called a volume if V
is finite-valued and for every countable family A, € V(¢ € T') of disjoint
sets such that A= UA, €V, we have v(4)= E'v(A.) Such a triple

(X, V,v) will be called a volume space.

In [1] has been presented a direct approach to the theory of
Lebesgue-Bochner integration generated by a volume space (X, V, v).
The construction of the theory was not based on the theory of
measurable functions or on the theory of measure. The construction
of the theory of Lebesgue-Bochner measurable functions and of the
theory of measure corresponding to this approach has been developed
in [3]. In this paper will be presented an approach to the theory
of integration generated by a positive linear functional based only
on the results of [1].

In §1 are given equivalent conditions for a linear positive funec-
tional on a linear lattice to be a Daniell functional. An extension
of the Daniell functional is constructed leading to a positive volume.

In §2 are given conditions for the integral functional generated
by the volume to be an extension of the Daniell functional.

In §3 are given theorems concerning of the existence of the
smallest extension of a Daniell funmctional to an integral functional
generated by a volume. It is proven that the volume constructed
in §2 generates the smallest extension, provided that every function
feC, is summable with respect to that volume.

In §4 are given representations of a Daniell functional by means
of integral functionals generated by measures. Existence of the
smallest measures representing the extensions of the functional are
established.

*) This research was partially supported by the NSF grant GP 2565.
*%) The result contained in Theorem 4 of this paper has been presented to the
American Mathematical Society, Notices AMS 13 (1966), p. 89.
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In §5 is given a Baire type characterization of the space of
Lebesgue-Bochner summable and measurable functions. Every such
a function is equal almost everywhere to a function of the fourth
Baire class C(Y) if the class C(Y) is defined to consist of sums
of functions of the form f-y where feC, and yc Y.

§ 1. Basic extensions of a Daniell functional from the linear
lattice. Let C, be a linear space of real-valued functions on an
abstract set X. Define the following operations |f|, fUg, fNg,
f*, f~ by means of the formulas | f|(x)=|f(x) [, (fUg)(x)=sup {f(x),
g(x)}, (f N g)(x) =inf{ f(z), g(x)}, f*(x)=sup{ f(x), 0}, f~(x)=sup{— f(x), 0}
for all x € X.

Proposition 1. Let C, be a linear space of real-valued functions
on an abstract set X. Then the following conditions are equivalent:
(@) | fleC, for all feC, (b) fUgeC, for all f, geC, (c) fNgeC,
for all f,g9€C,, () f+, f~eC, for all feC,.

A linear space C, of real-valued functions on X satisfying one
of the conditions of the proposition will be called in this paper a

linear lattice.
If L is a family of real-valued functions then we define the

subfamily L* to consist of all nonnegative functions fe L.

Let f, 9 be two functions on the set X. We shall write f<g
if flx)<g(x) for all xe X. Similarly we define the relation f>g.
We shall say that the sequence of functions f, is increasingly
(decreasingly) convergent to f if f,<f,u1 (fa=f.r1 respectively) and
fo(@)—f(x) for all xe X. It will be convenient to admit that an
increasing unbounded sequence of real numbers is convergent to oo,

Let J be a real-valued functional on the space C,. We say that
the functional is positive if J(f)>0 for all feCf. Notice that if
J is a positive linear functional and f, g€ C, and f<g then Jf<Jyg.

The following proposition is basic for constructions of integrals
generated by positive linear functionals (compare Bourbaki [4],
Loomis [5] p. 30-31, Riesz [6] Chapter 3, Stone [6]).

Proposition 2. Let C, be a linear lattice and J be a linear
positive functional on C,. Then the following conditions are
equivalent
(a) Jf.—0 for every sequence f,c C, decreasingly convergent to 0,
(b) Jf.—Jf for every sequence f, <€ C, increasingly or decreasingly
convergent to feC,,
©) if f,f.€Cf and f=fi+fot <+« then Jf=Jfi+JIfp+ -+,

@ ifg,f.€C, and the sequence f, increasingly converges to a
function f such that g<f then Jg<lim Jf,,
©) if f,faeC and fSSL, S, then JF<S0L Jf,,
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) of 9., f.€C, and g,,f, increasingly converge to g and f
respectively and g<f then lim Jg,<lim Jf,.

A linear positive functional J on a linear lattice C, will be called
a Daniell functional if it satisfies one of the conditions (a)—(f) of
Proposition 2. The condition (a) and conditions (b), (¢), (d), (f) as
its consequence were used by Daniell, Riesz, Loomis. The condition
(e) as an axiom on the functional J was used by Stone.

Let J be a Daniell functional on a linear lattice C,. Denote by
C the set of all functions f such that there exists a sequence f, € C,
increasingly convergent to the function f and such that the sequence
Jf, of numbers is bounded. We allow the function f to take on
also the value oo, Put Jf=limJf,. From the condition (f) of Prop.
2 we see that the expression Jf is well defined, that is it does not
depend on the particular choice of the sequence f,.

Notice that C,cC and the functional J just defined is an exten-
sion of the functional from the space C, onto the space C.

Proposition 3. (1) The set C of functions forms a positive
cone, that is if f,g9e€C then f+geC, and if t>0 and feC then
tfeC.

(2) The set C is closed under lattice operations, that is if f,geC
then fUg, fNgeC.

(38) The functional J is additive, positively homogeneus, and
inereasing on C that is, if f,9€C then J(f+9)=Jf+Jg, if t=0
and feC then J(if)=tJf, and if f,9€C and f<g then Jf<Jg.
(4) If a sequence f, € C increasingly converges to a function f and
the sequence Jf, is bounded then feC and Jf,—Jf.

Denote by D the set of all functions f for which there exist
finite-valued functions ¢,, g,€ C such that f=g¢,—g,. Put Jf=Jg,
—Jg,. From properties of the functional J on the cone C we can
easily prove that the above definition is correct. Notice C,cCNnDcD.
It is easy to see that the functional J just defined is an extension
of the functional from the space C, onto the space D.

Proposition 4. (1) The set D of functions is linear.

(2) The functional J is linear and increasing on D.
(3) If f,faeDt and f=fi+fi+ -+ then Jf=Jfi+Jfr+ «--.

§ 2. Extension of a Daniell functional to an integral with
respect to a volume. Denote by H the family of all sets QX
such that ¢, C and there exists a function fe C, such that c,<f,
where ¢, denotes the characteristic function of the set Q.

Let V be the family of all sets af the form A=Q,\Q, where
@, Q. € H.

A family of sets is called a lattice if it is closed under the
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operations of finite intersection and finite union.

Theorem 1.

(1) The family H of sets forms a lattice.
(2) The family V of sets forms a prering.
(3) If AeV then c e D.

From (3) of Theorem 1 we get that the function »(A4)=Je, is
well defined for all Ae V.

Theorem 2. The function v is a positive volume on the prering
V.

The triple (X, V, v) will be called the volume space generated
by the functional J. Let L be the space of real-valued summable
functions generated by the volume ». Let | be the integral func-
tional that is S f =S fdv for all fe L. We shall write gcf if the
function f is an extension of the function g.

Theorem 3. The following two conditions are equivalent:
JCS and C,c L.

A related result was obtained by Zaanen [8].

We shall say that the linear lattice C, satisfies the Stone
condition if for every function feC, we have fNnleC, This
condition was introduced in [7]. II.

Theorem 4. If the linear lattice C, satisfies the Stone condi-

tion then C,C L and therefore J CS.

§ 3. Existence of the smallest extension of a Daniell
functional to an integral generated by a volume. Let w be a

volume and S be the corresponding integral functional defined on

the space L, of all real-valued w-summable functions. If F is a
family of such functionals then we shall say that a functional

€ F is the smallest in F if S CS for all S cF.

wo wo w
Theorem 5. The integral functional S= is the smallest in
the family of all integral functionals § such that Jc\ , provided

that the linear lattice C, is contained ’l,”;l, the space L, o'}‘ all real-
valued v-summable functions.

§4. Extensions of a Daniell functional to integrals gen-
erated by measures and existence of the minimal representing
measures. If B is a sigma-ring of subsets of the space X and g
is a measure on B then the family

W={A € B: u(A)< o}
is a prering. Let Z be the Lebesgue completion of the measure g
that is the smallest complete measure 7 such that gcz. Denote
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by w the restriction of the measure g to the prering W. It is
easy to prove that the space L(w, Y) of Lebesgue Bochner summable
functions as developed in [1] coinsides with the space L(Z, Y) of
Lebesgue-Bochner summable functions obtained by any classical
construction and more-over we have || ||,=]|| ||z and S f dw:S fap
for all fe L(w, Y).

In this paper by integration with respect to a measure p we
shall understand the integration generated by the volume w.

Let J be a Daniell functional and (X, V, v) be the volume space
generated by J. Let y, be the measure generated by v by means
of the construction presented in §3, [3]. Let M be the smallest
sigma-ring containing V and g the restriction of the measure g,
to M.

Denote by the integral functional defined by the formula
©
Sy(f)=§ Fdp for all feL(y, R).

Theorem 6. If C,cL=L, then the measure p(p,) s the
smallest measure (the smallest complete measure, respectively) 7

such that J CS .
7

From this theorem we get

Theorem 7. The Lebesgue completion [£ of the measure p
coinsides with the measure ..

Indeed from minimality of y we have pcy,. Since g, is complete

we have pcpgc y,. Using Theorem 8, § 7, [3] we get S =S_:§ :S .
4 &© ty

Thus Jc|\ . Now from minimality of p, we get pg,Cf. ’ This
together with the previously proven inclusion yeilds zZ=g,.

This result can be proven for any volume v directly from Theorem
8,87, [3].

In the process of the construction we have proven the following

Theorem 8. Let J be a Daniell functional on a linear lattice
C, and v be the volume generated by J. If C,cL=L, then J cg

=1\, "

§ 5. A Baire type characterization of the spaces of Lebesgue-
Bochner summable and measurable functions generated by a
Daniell functional. Let C(Y) consist of sums of functions of the
form f-y where feC, and ye Y, Y being a Banach space. Let the
classes C,(Y) be defined by induction as follows: the class C,(Y)
consists of all limits under convergence everywhere of sequences of
functions from the class C,_,(Y).

Let L(Y) and M(Y) be the space of Bochner summable functions



No. 3] An Approach to Theory of Integration 191

as in [1] and the space of Bochner measurable functions as defined
in [3] generated by the volume v.

Theorem 9. Let v be the volume generated by a Daniell
Sunctional J defined on a linear lattice C,. If C,CcL=L,then for
every function f from the space L(Y) (or M(Y)) there exists a
Sunction g from the set C(Y)NL(Y) (the set C(Y) respectively)
such that f(x)=g(x) v-almost everywhere on X.

Compare Bogdanowicz [3], §6, Theorem 7. We have also

Theorem 10. Let v be the volume generated by a Daniell
Sunctional J defined on a linear lattice C,. If C,cL=L, then
for every function f from the space L(Y) (or M(Y)) there exists
a sequence of functions f,€Cy(Y) such that || fo—f|l—0 (fi—f
v-almost everywhere on X respectively).

A part of the results of this paper will appear in Mathematische
Annalen.

References

[1] Bogdanowicz, W. M.: A generalization of the Lebesgue-Bochner-Stieltjes
integral and a new approach to the theory of integration. Proc. Nat. Acad.,
Sc. USA, 53, 492-498 (1965).

[2] ——: Integral representations of multilinear continuous operators from the
space of Lebesgue-Bochner Summable functions into any Banach space, to
appear in Trans., Amer. Math. Soc., for announcement of the results see
Bull. Amer. Math. Soc., 72, 317-321 (1966).

[83] ——: An approach to the theory of Lebesgue-Bochner measurable functions
and to the theory of measure. Mathem. Annalen, 164, 251-270 (1966).

[4] Bourbaki, N.: Intégration, Actual. Scient. et Ind.,, Chap. I-IV. No. 1175
(1952); Chap. V. No. 1244 (1956); Chap. VI. No. 1281 (1959).

[5] Loomis, L. H.: An introduction to abstract harmonic analysis. D. Van
Nostrand Co. 1953.

[6] Riesz, F., and Sz.-Nagy, B.: Lecons d’anédlyse fonctionnelle. Akademiai
Kaido, Budapest (1952).

[7] Stone, M. H.: Notes on integration. I, II, III, IV. Proc. Nat. Acad. Sci.
USA, 34, 336-342, 447-455, 483-490 (1948), 35, 50-58 (1949).

[8] Zaanen, A, C.: A note on the Daniell-Stone integral. Colloque sur ’anlyse
fonctionnelle, 63-69 (1961).



