70. On Regularity of Solutions of Abstract Differential Equations in Banach Space

By Hiroki Tanabe
(Comm. by Kinjirô Kunugi, m.J.A., April 12, 1967)

The present paper is concerned with the estimates for the successive derivatives of solutions of abstract differential equations of parabolic type in a Banach space X :

$$
\begin{equation*}
d u(t) / d t+A(t) u(t)=f(t), \quad 0<t \leqq T . \tag{1}
\end{equation*}
$$

The main result is briefly stated as follows: if $A(t)$ and $f(t)$ belong to a Gevrey's class as functions of t, then so does the solution of (1). This is an answer to the problem proposed in p. 388 of [3].

Let $\left\{M_{k}\right\}$ be a sequence of positive numbers which has the properties (1.1), \cdots, (1.7) in p. 366 of [4]. In what follows we will not confine ourselves to non quasi-analytic cases since we will not work only in the spaces such as $D_{+, \mu_{k}}$ (cf. [3]).

Assumptions. (i) For each $t \in[0, T], A(t)$ is a densely defined linear closed operator in X. The resolvent set of $A(t)$ contains a fixed closed sector $\sum=\{\lambda: \theta \leqq \arg \lambda \leqq 2 \pi-\theta\}, 0<\theta<\pi / 2$.
(ii) $A(t)^{-1}$, which is a bounded operator according to the preceding assumption, is infinitely differentiable in t.
(iii) There exist constants K_{0} and K such that for any $\lambda \in \sum$, $t \in[0, T]$ and non-negative integer n

$$
\left\|(\partial / \partial t)^{n}(\lambda-A(t))^{-1}\right\| \leqq K_{0} K^{n} M_{n} \| \lambda \mid
$$

It can be shown with the aid of S. Agmon's result on general elliptic boundary value problems ([1]) that the assumptions above are satisfied for the initial-boundary value problems of parabolic differential equations under appropriate conditions on the coefficients.

In view of Theorem 3.1 of [2] the evolution operator $U(t, s)$ can be constructed as follows:

$$
\begin{aligned}
U(t, s) & =\exp (-(t-s) A(t))+W(t, s) \\
W(t, s) & =\int_{s}^{t} \exp (-(t-\tau) A(t)) R(\tau, s) d \tau \\
R(t, s) & =\sum_{m=1}^{\infty} R_{m}(t, s) \\
R_{1}(t, s) & =-(\partial / \partial t+\partial / \partial s) \exp (-(t-s) A(t)), \\
R_{m}(t, s) & =\int_{s}^{t} R_{1}(t, \tau) R_{m-1}(\tau, s) d \tau, \quad m=2,3, \cdots
\end{aligned}
$$

$R(t, s)$ is the solution of the integral equation

$$
\begin{equation*}
R(t, s)=R_{1}(t, s)+\int_{s}^{t} R_{1}(t, \tau) R(\tau, s) d \tau \tag{2}
\end{equation*}
$$

Theorem 1. Under the assumptions (i), (ii), (iii) there exist constants L_{0}, L such that for any integer $n \geqq 0$

$$
\left\|(\partial / \partial t)^{n} U(t, s)\right\| \leqq L_{0} L^{n} M_{n}(t-s)^{-n}, \quad 0 \leqq s<t \leqq T
$$

Theorem 2. Suppose that the assumptions (i), (ii), (iii) are satisfied. If $f(t)$ is an infinitely differentiable function and satisfies for some constants B_{0} and B

$$
\left\|d^{n} f(t) / d t^{n}\right\| \leqq B_{0} B^{n} M_{n}, \quad s \leqq t \leqq T
$$

for all integers $n \geqq 0$, then the solution $u(t)$ of (1) is infinitely differentiable and satisfies for some constants N_{0} and N

$$
\left\|d^{n} u(t) / d t^{n}\right\| \leqq N_{0} N^{n} M_{n}(t-s)^{-n}, \quad s<t \leqq T
$$

for all integers $n \geqq 0$.
Lemma 1. There exist constants C_{0} and C such that

$$
\left\|\left(\frac{\partial}{\partial t}\right)^{l}\left(\frac{\partial}{\partial t}+\frac{\partial}{\partial s}\right)^{m} R_{1}(t, s)\right\| \leqq C_{0} C^{m+l} M_{l} M_{m}(t-s)^{-l}
$$

for all integers $l \geqq 0$ and $m \geqq 0$.
Lemma 2. There exist constants H_{0} and H such that for all integers $l \geqq 0$

$$
\begin{equation*}
\left\|(\partial / \partial t)^{l} R(t, s)\right\| \leqq H_{0} H^{l} M_{l}(t-s)^{-l} \tag{3}
\end{equation*}
$$

Outline of proof of Lemma 2. Let us prove the lemma by induction with the respect to l and suppose (3) is true for $l=1, \cdots, n-1$. Let $r_{i}=s+i(t-s) /(n+1), i=1, \cdots, n$. Then

$$
\begin{aligned}
& (\partial / \partial t)^{n} R(t, s)=(\partial / \partial t)^{n} R_{1}(t, s) \\
& \quad+\sum_{i=1}^{n} \sum_{j=0}^{i-1}\binom{i-1}{j}\left(\frac{\partial}{\partial t}\right)^{n-i}\left(\frac{\partial}{\partial t}+\frac{\partial}{\partial r_{i}}\right)^{i-1-j} R_{1}\left(t, r_{i}\right) \cdot\left(\frac{\partial}{\partial r_{i}}\right)^{j} R\left(r_{i}, s\right) \\
& \quad+\sum_{i=0}^{n} \int_{r_{i}}^{r_{i+1}} \sum_{m=0}^{i}\binom{i}{m}\left(\frac{\partial}{\partial t}\right)^{n-i}\left(\frac{\partial}{\partial t}+\frac{\partial}{\partial \tau}\right)^{i-m} R_{1}(t, \tau) \cdot\left(\frac{\partial}{\partial \tau}\right)^{m} R(\tau, s) d \tau .
\end{aligned}
$$

This can be verified by noting (2) and integrating by part with respect to τ in the right side of

$$
\begin{aligned}
& \left(\frac{\partial}{\partial t}\right)^{n} \int_{r_{i}}^{r_{i+1}} R_{1}(t, \tau) R(\tau, s) d \tau \\
& =\left(\frac{\partial}{\partial t}\right)^{n-i} \int_{r_{i}}^{r_{i+1}} \sum_{j=0}^{i}\binom{i}{j}\left(-\frac{\partial}{\partial \tau}\right)^{j}\left(\frac{\partial}{\partial t}+\frac{\partial}{\partial \tau}\right)^{i-j} R_{1}(t, \tau) \cdot R(\tau, s) d \tau
\end{aligned}
$$

By the induction hypothesis and with the aid of (1.9), (1.10), (1.10') in p. 367 of [4] as well as Sterling's formula we get

$$
\begin{align*}
& \left\|(\partial / \partial t)^{n} R(t, s)\right\| \leqq \exp \left(-C_{0} M_{0}^{2} e T\right) H_{0} H^{n} M_{n}(t-s)^{-n} \\
& \quad+C_{0} M_{0}^{2} \int_{r_{n}}^{t}\left\|(\partial / \partial \tau)^{n} R(\tau, s)\right\| d \tau \tag{4}
\end{align*}
$$

if H_{0} and H are sufficiently large depending only on the constants which appeared in the assumptions (i), (ii), (iii). If we set

$$
G(t, s)=(t-s)^{n}\left\|(\partial / \partial t)^{n} R(t, s)\right\|,
$$

then in view of (4) we get

$$
\begin{equation*}
G(t, s) \leqq \exp \left(-C_{0} M_{0}^{2} e T\right) H_{0} H^{n} M_{n}+C_{0} M_{0}^{2} \int_{s}^{t} G(\tau, s) d \tau \tag{5}
\end{equation*}
$$

since if $r_{n}<\tau<t,(t-s)^{n}<\left(1+n^{-1}\right)^{n}(\tau-s)^{n}<e(\tau-s)^{n}$. Integrating (5) we obtain

$$
G(t, s) \leqq H_{0} H^{n} M_{n},
$$

which completes the proof of the lemma.
The proof of the theorems is similar to the argument above.

References

[1] S. Agmon: On the eigenfunctions and on the eighenvalues of general elliptic boundary value problems. Comm. Pure Appl. Math., 15, 119-148 (1962).
[2] T. Kato and H. Tanabe: On the abstract evolution equation. Osaka Math. J., 14, 107-133 (1962).
[3] J. L. Lions and E. Magenes: Espaces de fonctions et distributions du type de Gevrey et problèmes aux limites paraboliques. Ann. di Mat. pura et appl., 68, 341-418 (1965).
[4] -: Espaces du type de Gevrey et problèmes aux limites pour diverses classes d'equations d'evolution. Ann. di Mat. pura et appl., 72, 343-394 (1966).

