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and Complete Volumes
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Let / be a measure on a a-ring M. Denote by v-tl the func-
tion defined by the formula: v(A)-I(A for A e V, where

V- {A e M’/(A)< c}.
It is easy to see that the family V is a prering and the function
v is a volume. This volume will be called the finite part of the
measure /. If one follows carefully any construction of the space
L,(Y) of Lebesgue-Bochner summable functions generated by the
measure f one notices that essentially one needs only the finite part
of the measure.

Further observation yields that one needs actually only a func-
tional J which we call a complete integral seminorm. This functional
is given by the formula

tfd/ (f e L),Jf=
where L+ consists of all finite-valued -summable nonnegative func-
tions. In this paper we shall find inner characterizations of complete
integral seminorms.

If f, g are two real valued functions then by fg, fg, fl
we shall understand the functions (fg)(x)-inf{f(x), g(x)}, (fg)(x)
=sup{f(x), g(x)}, (f 1)(x)-inf{f(x), 1} for all x e X.

We shall write f_g if f(x)_g(x) for all x e X. In a similar way
we define the relation f>_g.

A sequence f is called increasing (decreasing) if the condition
n

_
m implies f_<f (f:>f, respectively).
A nonnegative functional J is called an integral seminorm over

the space X if its domain J+ consists of functions from X into
R /- 0, c) and the following three conditions are satisfied:

(1) If t, t e R+ and fi, f e J+ then tfi + tf e J+ and
J(tlf / tff) tiJfi / t.Jfi..

(2) If f,gJ+ then fUgeJ+ and fleJ+.
(3) If f_g and f, g e J+ then g-fe J+.
The integral seminorm is called upper complete if, for every

increasing sequence f e J+, converging at every point of the space
to a finite-valued function f, for which the sequence of numbers
Jf is bounded, we have f e J/ and JfJf.
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An integral seminorm is called complete if in addition it satisifies
the following condition" If O<_g<_fe J/ and Jf=O then g e J/.

lxample 1. Let M be a a-ring of subsets of a space X. Let
/ be a measure on M. Let J+ consist of all/-summable finite-valued
nonnegative functions and let

Jf= ffd[ or fe J+.

Then J is an upper complete integral seminorm.
If the measure is complete that is if it has the following

property" A B e M and (B)-0 implies A e M, then the functional
J is a complete integral seminorm. Since every measure admits a
complete extension, see for example Halmos [14, therefore every
measure generates a complete integral seminorm.

It is interesting to notice that the construction of the integral
developed in Dunford and Schwartz [15J has the properties that the
measure generates the same integral seminorm as its completion
/o([15 p. 147), that is we have the see L of all non-negative finite-
valued summable functions generated by / coincides with the set

and we have Ifd[-Ifd[o for allL f e L,+.
For other methods to generate integral seminorms see [7, [13,

[6, [7.
If v is a volume on a prering Vof a space Xthen the triple

(X, V, v) is called a volume space.
If F is a family of real valued iunctions on X then by F+ we

shall denote the family of all non-negative functions from F.
Ixample 2.. Let (X, V, v) be a volume space and L(v, R) be

the corresponding space of summable functions (see [1). Put

J+- L+(v, R) and Jf= ffdv for f e J+.
It follows from Theorems i and 2, [1 that the functional J is a
complete integral seminorm.

Denote by i the operator prescribing the integral seminorm J to
the measure / as in Example 1, that is J=i[.

We shall use the same symbol to denote the integral seminorms
generated by a volume v as in Example 2. Thus to indicate that
the functional is generated by the volume v we shall write J=iv.

A volume v with the domain V is called upper complete if tle
ollowing two conditions are satisfied"

(1) The family V is a ring that is in addition to axioms of a
prering it satisfies the following condition: if A, B e V then A B e V.

(2) For every sequence of increasing sets A e V such that the
sequence v(A) of numbers is bounded we have A-t2 A e V.
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If in addition the volume satisfies the following condition"
ABe Vand v(B)-O implies AeV, then the volume v is called
complete.

Denote by g the operator mapping an integral seminorm J into
the set function v-gJ defined by the conditions

V-{AeX’zJ+}
and v(A)-Jz for all A e V.

Theorem 1. If J is a complete integral seminorm then v-gJ is a
complete volume such that J=iv, that is

J+- L+(v, R) and Jf ffdv for all f J+.
The proof is based on the following lemmas and on results of 1.

Lemm 1. If f, f J+ and f_f then Jf

_
Jf.

Define the following family of functions
N+ {f e J+" Jf= 0}.

This family of functions will be called the family of null-functions
corresponding to the integral semnorm J.

Lemma 2. If J is a complete integral seminorm and O_g_f
and feN+ then g e N+.

Denote by N the family of all sets A X such that Z e N+.
This family will be called the family of null-sets generated by the
integral seminorm.

A family F of subsets of a space X is called a sigma-ideal if
the following two conditions are satisfied:

(1) If ABeF then AeF,
(2) If Ae F is a sequence of sets then UAe F.
Lemma :3. The family N forms a sigma-ideal of sets.
Lemma 4. Let feJ+. Then the following conditions are

equivalent" f e N+ and {x e X: f(x) 0} e N.
Lemma 5. Let f e J+ be a decreasing sequence convergent at

every point of X to a function f. Then f J+ and Jf---Jf.
Lemma 5. If A, feJ+ then AfeJ+.
Denote by t the operator mapping a measure ,a on a semi-ring

M of subsets of X into its finite part v-tt. That is into a se
function defined on

V= {A e M" I(A)< c}
by the formula v(A)-(A) for all A V.

Notice that the function v-t[ is an upper complete volume.
Theorem 2. Let [ be a complete measure and J-il. Thev

the finite part of [ coincides with the volume v-gJ, that is t[-gJ.
As an immediate consequence of Theorem 2 we get the corollary..
Corollary 1. Let [, [. be complete measures defined on somz
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sigma-rings of a space X. Then the measures generate the same
complete integral seminorm, that is J=i[-i[, if and only if,
the measures have the samv finite part, that is

v= tl= t[.
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