66. Relations between Complete Integral Seminorms and Complete Volumes

By Witold M. BOGDANOWICZ

Catholic University of America, Washington, D. C., U.S.A.

(Comm. by Kinjirô KUNUGI, M.J.A., April 12, 1967)

Let μ be a measure on a σ -ring M. Denote by $v = t\mu$ the function defined by the formula: $v(A) = \mu(A)$ for $A \in V$, where

$$\mathcal{V} = \{A \in M : \mu(A) < \infty\}.$$

It is easy to see that the family V is a prering and the function v is a volume. This volume will be called the finite part of the measure μ . If one follows carefully any construction of the space $L_{\mu}(Y)$ of Lebesgue-Bochner summable functions generated by the measure μ one notices that essentially one needs only the finite part of the measure.

Further observation yields that one needs actually only a functional J which we call a complete integral seminorm. This functional is given by the formula

$$Jf = \int fd\mu \ (f \in L^+_\mu),$$

where L^+_{μ} consists of all finite-valued μ -summable nonnegative functions. In this paper we shall find inner characterizations of complete integral seminorms.

If f, g are two real valued functions then by $f \cap g$, $f \cup g$, $f \cap 1$ we shall understand the functions $(f \cap g)(x) = inf\{f(x), g(x)\}, (f \cup g)(x)$ $= sup\{f(x), g(x)\}, (f \cap 1)(x) = inf\{f(x), 1\}$ for all $x \in X$.

We shall write $f \leq g$ if $f(x) \leq g(x)$ for all $x \in X$. In a similar way we define the relation $f \geq g$.

A sequence f_n is called increasing (decreasing) if the condition $n \le m$ implies $f_n \le f_m$ ($f_n \ge f_m$, respectively).

A nonnegative functional J is called an integral seminorm over the space X if its domain J^+ consists of functions from X into $R^+=<0,\infty)$ and the following three conditions are satisfied:

(1) If $t_1, t_2 \in \mathbb{R}^+$ and $f_1, f_2 \in J^+$ then $t_1f_1 + t_2f_2 \in J^+$ and

$$J(t_1f_1+t_2f_2)=t_1Jf_1+t_2Jf_2.$$

(2) If $f, g \in J^+$ then $f \cup g \in J^+$ and $f \cap 1 \in J^+$.

(3) If $f \leq g$ and $f, g \in J^+$ then $g - f \in J^+$.

The integral seminorm is called *upper complete* if, for every increasing sequence $f_n \in J^+$, converging at every point of the space to a finite-valued function f, for which the sequence of numbers Jf_n is bounded, we have $f \in J^+$ and $Jf_n \rightarrow Jf$.

An integral seminorm is called *complete* if in addition it satisifies the following condition: If $0 \le g \le f \in J^+$ and Jf = 0 then $g \in J^+$.

Example 1. Let M be a σ -ring of subsets of a space X. Let μ be a measure on M. Let J^+ consist of all μ -summable finite-valued nonnegative functions and let

$$Jf = \int f d\mu ext{ for } f \in J^+.$$

Then J is an upper complete integral seminorm.

If the measure μ is complete that is if it has the following property: $A \subset B \in M$ and $\mu(B) = 0$ implies $A \in M$, then the functional J is a complete integral seminorm. Since every measure admits a complete extension, see for example Halmos [14], therefore every measure generates a complete integral seminorm.

It is interesting to notice that the construction of the integral developed in Dunford and Schwartz $\lceil 15 \rfloor$ has the properties that the measure μ generates the same integral seminorm as its completion $\mu_{c}(\lceil 15 \rceil p. 147)$, that is we have the see L_{μ}^{+} of all non-negative finite-valued summable functions generated by μ coincides with the set

$$L^+_{\mu_e}$$
 and we have $\int \! f d\mu = \int \! f d\mu_e$ for all $f \in L^+_{\mu}$.

For other methods to generate integral seminorms see [7], [13], [16], [17].

If v is a volume on a prering V of a space X then the triple (X, V, v) is called a *volume space*.

If F is a family of real valued functions on X then by F^+ we shall denote the family of all non-negative functions from F.

Example 2. Let (X, V, v) be a volume space and L(v, R) be the corresponding space of summable functions (see [1]). Put

$$J^+ = L^+(v, R)$$
 and $Jf = \langle fdv \text{ for } f \in J^+.$

It follows from Theorems 1 and 2, [1] that the functional J is a complete integral seminorm.

Denote by *i* the operator prescribing the integral seminorm J to the measure μ as in Example 1, that is $J=i\mu$.

We shall use the same symbol to denote the integral seminorms generated by a volume v as in Example 2. Thus to indicate that the functional is generated by the volume v we shall write J=iv.

A volume v with the domain V is called *upper complete* if the following two conditions are satisfied:

(1) The family V is a ring that is in addition to axioms of a prering it satisfies the following condition: if $A, B \in V$ then $A \cup B \in V$.

(2) For every sequence of increasing sets $A_n \in V$ such that the sequence $v(A_n)$ of numbers is bounded we have $A = \bigcup_n A_n \in V$.

[Vol. 43,

If in addition the volume satisfies the following condition: $A \subset B \in V$ and v(B) = 0 implies $A \in V$, then the volume v is called complete.

Denote by g the operator mapping an integral seminorm J into the set function v=gJ defined by the conditions

$$V = \{A \in X : \chi_A \in J^+\}$$

and
$$v(A) = J\chi_A$$
 for all $A \in V$.

Theorem 1. If J is a complete integral seminorm then v=gJ is a complete volume such that J=iv, that is

$$J^+ = L^+(v, R)$$
 and $Jf = \int f dv$ for all $f \in J^+$.

The proof is based on the following lemmas and on results of [1].

Lemma 1. If $f_1, f_2 \in J^+$ and $f_1 \leq f_2$ then $Jf_1 \leq Jf_2$.

Define the following family of functions

$$N^+ \!=\! \{f \in J^+: Jf \!=\! 0\}.$$

This family of functions will be called the family of null-functions corresponding to the integral seminorm J.

Lemma 2. If J is a complete integral seminorm and $0 \le g \le f$ and $f \in N^+$ then $g \in N^+$.

Denote by N the family of all sets $A \subset X$ such that $\chi_A \in N^+$. This family will be called the family of null-sets generated by the integral seminorm.

A family F of subsets of a space X is called a sigma-ideal if the following two conditions are satisfied:

(1) If $A \subset B \in F$ then $A \in F$,

(2) If $A_n \in F$ is a sequence of sets then $\bigcup_n A_n \in F$.

Lemma 3. The family N forms a sigma-ideal of sets.

Lemma 4. Let $f \in J^+$. Then the following conditions are equivalent: $f \in N^+$ and $\{x \in X: f(x) \neq 0\} \in N$.

Lemma 5. Let $f_n \in J^+$ be a decreasing sequence convergent at every point of X to a function f. Then $f \in J^+$ and $Jf_n \rightarrow Jf$.

Lemma 6. If $f_1, f_2 \in J^+$ then $f_1 \cap f_2 \in J^+$.

Denote by t the operator mapping a measure μ on a semi-ring M of subsets of X into its finite part $v=t\mu$. That is into a set function defined on

$$V = \{A \in M : \mu(A) < \infty\}$$

by the formula $v(A) = \mu(A)$ for all $A \in V$.

Notice that the function $v = t\mu$ is an upper complete volume.

Theorem 2. Let μ be a complete measure and $J=i\mu$. Then the finite part of μ coincides with the volume v=gJ, that is $t\mu=gJ$. As an immediate consequence of Theorem 2 we get the corollary.

Corollary 1. Let μ_1, μ_2 be complete measures defined on some

No. 4]

sigma-rings of a space X. Then the measures generate the same complete integral seminorm, that is $J=i\mu_1=i\mu_2$, if and only if, the measures have the same finite part, that is

 $v = t \mu_1 = t \mu_2$.

References

- Bogdanowicz, W. M.: A generalization of the Lebesgue-Bochner-Stieltjes integral and a new approach to the theory of integration. Proc. Nat. Acad. Sci., U.S.A., 53, 492-498 (1965).
- [2] ----: Integral representations of linear continuous operators from the space of Lebesgue-Bochner summable functions into any Banach space. Proc. Nat. Acad. Sic., U.S.A., 54, 351-354 (1965).
- [3] —: Integral representations of multilinear continuous operators from the space of Lebesgue-Bochner summable functions into any Banach space, to apper in Trans Amer. Math. Soc., for announcement of the results see Bull. Amer. Math. Soc., 72, 317-321 (1966).
- [4] ----: Fubini Theorems for generalized Lebesgue-Bochner-Stieltjes integral, to appear in Trans. Amer. Math. Soc., for announcement of the results see Proc. Japan Acad., 42 (1966) (supplement to 41, 979-983 (1965)).
- [5] —: An approach to the theory of Lebesgue-Bochner measurable functions and to the theory of measure. Math. Annalen, **164**, 251-270 (1966).
- [6] —: An approach to the theory of integration and to the theory of Lebesgue-Bochner measurable functions on locally compact spaces. Math. Annalen (to appear).
- [7] —: An approach to the theory of integration generated by positive functionals and integral representations of linear continuous functions on the space of vector valued continuous functions. Math. Annalen (to appear).
- [8] ——: Existence and uniqueness of extensions of volumes and the operation of completion of a volume. I. Proc. Japan Acad., **42**, 571-576 (1966).
- [9] —: On volumes generating the same Lebesgue-Bochner integration. Proc. Nat. Acad. Sci., U.S.A., 56, 1399-1405 (1966).
- [10] —: Vectorial integration and extensions of vector-valued set functions to measures (to appear).
- [11] —: Remarks on Lebesgue-Bochner integration. Vectorial integration generated by complete integral seminorms (to appear).
- [12] —: A necessary and sufficient condition for an integral seminorm to admit an extension to a complete integral seminorm (to appear).
- [13] Bourbaki, N.: Integration, Actual. Scient. et Ind., Chap. I-IV, No. 1175 (1952); Chap. V, No. 1244 (1956); Chap. VI No. 1281 (1959).
- [14] Halmos P. R.: Measure Theory, D. Van Nostrand Co., Inc. New York (1950).
- [15] Dunford, N., and Schwartz, J.: Linear Operators Vol. I. Interscience (1958).
- [16] Riesz, F., and Nagy, Sz., B.: Leçons d'analyse fonctionelle. Akademiai Kaido, Budapest (1952).
- [17] Stone, M. H.: Notes on integration: I, II, III, IV. Proc. Nat. Acad. Sci., U.S.A., 34, 336-342, 447-455, 483-490 (1948), 35, 50-58 (1949).