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105. On Certain Condition for the Principle of
Limiting Amplitude. II

By Kji KUBOTA and Taira SHIROTA
Department of Mathematics, Hokkaido University

(Comm. by Kinjir5 KUNUCI, M.J.A., June 12, 1967)

1o Introduction and results. We consider the problem

( 1 - zl + q(x) u(x, t) 0 (t > 0),

u(x, O) 0 u_ (x O)- f(x)

where x is a point of 3-dimensional Euclidean space E-R, and z/

denotes the Laplace operator in E.
In an earlier paper [1, for the case that q has compact support

we proved that under the certain condition the principle of limit
amplitude for the problem (1) is valid if and only if there exists
no solution o)e L(E) of the equation (-z/+q)w=0 satisfying con-

-o(I xditions w-O(I x [-*), (I x (see 2).

In the present paper we shall prove the same one for the case
that the support of q is not compact.

Through the present paper q(x) and f(x) are assumed to satisfy
the following conditions (C,), (C0, and (C):
(C1) q(x) is a locally Hb’lder continuous real-valued function and
behaves like O(I x ]--) (a>0) at infinity.

By A we denote the unique self-adjoint extension in L(E) of
z/+ q defined on C(E).

(CO A has no eigenvalue.
Then A is positive definite.

(C) f belongs to the domain D(A1/2) of the self-adjoint operator

A and behaves like 0(I x [--) at infinity.
Under the assumptions (C), (C0, and (C) we have the followings:
Theorem 1. Suppose that (f,o)}=0, where w is the pre-

and (f oo} denotes tf(x)o)(x)dx. Then for the solutionceding oTe

u(t) u(x, t) of (1) we have
lira (u(t), )) 0 for all e L(E),

and
lira II u(t) II()=0 for all compact KE.
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Theorem 2. Suppose that q eC(E) and q-O(Ixl--), Dq
=0(I x --) (I x I-c) (1/ 1-1, 2). Then the solution of (1) is such
that for any e L(E) satisfying the condition -O(Ixl--) (Ix --c)
we have

lim (u(t), }-47, w} (f } (q, w}-,
where w is the above one.

2. Proof ot Theorem 1. Let us define an operator for func-

tions in L(E) by T(x)-__1 I q(Y)(Y) dy ( e L). Then by

virtue of Lemma 3.2 in [4 we have
Lemma 1o 1) T is a compact operator on L and the adjoint

operator T* of T with respect to the inner product , } is a

compact operator on L given as follows"

T*w’(x)- -1---q(x)I w’(Y) dy (w’ e L).
47 Ix-y[

2) By M, M’ we denote the subspaces {w L6; (I- T)w-O},
6

{w’ e L; (I- T*)w’-O} of L6., L respectively. Then we have that
dim M-dim M’<=I and that @, w}O for o) M (wO). Further-

more, for o) M we have that w e C2(E) w-O(I x 1-1)
3o)

-0(I x 1-2)’-x
(I x --c) and for w’ M’ we have that w’ C(E), w’-O(I x 1-3-)
,(I x

By virtue of Lemma 1 and Riesz-Schauder’s theory we have
Lemma 2. Suppose that e L2(E), -0(I x -3-d) (] x I---c), and

(, w}-O for w eM. hen we have that eR(A), where R(A)
denotes therange of A

Proof of Theorem 1. It follows from Lemma 2 and theorem 6
in 4 that lim (u(t), ?)()-0 for all ? e L(E).

Lemma 2 and the first part of Theorem 1 and an argument
similar to the one used in proving Lemma 4.1 in [5 give that
lim [lu(t)[[.()-0 for all compact KcE.
t--oo

:3. Proof of Theorem 2. Suppose that there exist functions
o) e M such that w =/: 0. Then 2) of Lemma 1 implies that dim M= 1.
Therefore, taking o) e M such that (q, w}-1, we have only to prove
( 2 lim (u(t), q}-4(f, w.

To this we use the following

Lemma 3. Let aO. Then u(x t) i I+etR )fd is

the solution of the problem (1), where R(-)f denotes (A+)-f.
Now we shall prove (2). Since A has no eigenvalue, by virtue
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d (Ef, q}e LI(O, c), where Eof theorem 6 in [4_ we see that d
is the resolution of the identity generated by the operator A.
Therefore by virtue of Lemma 3 and Fubini’s theorem we have

1 I d I+ e(u(t), q)--- (Ef q)d
a- + d

2i (Ef q) d2
r+r +d+ sinv/2td/Er,\ q}

for N>2a,

we have

(4) I-Ef q}d I e
rl + ---- ded+ f eF()d+ f47<f’ w} Ir- r

Here

et(R(- )f, Tp()}d.

where F and F. are the curves
{s-iN; Os<=a}U{a+is; -NsN}{s+iN; 0s<__a},
{s + iN; a <= s 0} { a + is; N s N} {s iN; a_< s 0}

taken in the positive direction.

We can take N so large that I sin l/ t d(Ef, q} becomes

sufficiently small uniformly with respect to t >0. Let N fix sufficiently
large. Since on F, Re.0, by virtue of Lebesque’s theorem we
have

lim (Ef q)d2 e;t

+d-O.
Consequently we have only to prove

(3) lim ;Ef q)d e
+ d- f

Since we have that R )f + TR )f and (R )f, q}

=4-(-p, qw}+(R(-)f p()}, by virtue of Fubini’s theorem
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1 e-T?(x)- 4-- q(x)
x-yl

(y)dy,

T+(x) k(x), T+(x) T(T-l+)(x) (j- 1, 2, 3).
Then without difficulty we have

5 lira 4(f, w} etd-8i(f ,
F -6 lira

e;
F(5) d5 0.

t F -Therefore we have only to prove the following

7) lim et(R(-)f, p()}d-O,(
t F

where p(x, )- Tp(x,
To do it we use the following

Lemma 4. For >0 we set O(2)O(x,2)-(u+(x,2)-u_(x,2)),
where u(x, 2)-R(2iO)f(x). By C5, we denote the Banach space

{ C(E), sup D(x) (1+Ix ])<} with the norm
xE,ll2

sup D(x)[(l+lx ). Then T()(0(2), (C%,) is a

bos o LO, .
Poof of 7. By virtue o Lepta 4 and Fubini’s theore we

have

e;td
r o 2 +

where is the path obtained replaeing by in 1. Furthermore
by virtue of Lemma 4, Lebesque’s theorem, theorem 4 in 3 and
Riemann-Lebesque’s theorem we see that we have only to prove

9 lim lim d2

To this we have only to prove

(10) lim lim g2 e(+"t (2 )<20(2)’ p(s+ i)) g O._
(-sy+s

Set p- (] x- y + y- z + z- u + u- v vv’). Then by virtue
of Fubini’s theorem, for fixed t>0 and fixed e>0 we have

(-sy+
where

(12) I q(y) dyI q(z) dzI q(u) du,t(x)-q(x)
Ix-y] y-z

f I: f I (-)e[u-vlq(v)w(v)dv dr’ ive-(-e)dv d8.
-(s-y+e
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(13)

First we shall prove

lim d e+"(-s)O()’ p(s + is)) ds
-o

_
(_sy+e

,O(x, ) lim ,()g.
s0

Let t>0 be fixed. Then we see that there exists a constant C
such that for any 2N we have

+ ( N+2)(14) e,_.sup D?,t(x)](l+l x I)--C l+log
N-

for all e =< 0.
In fact, since s cos s is an odd function, for 2<N we have

(15) I

_
(s-)e ds eIf-) cS sds-pI-) cSds
(s-)+ 8 (--)p s --)p s(s + 8p)

f (-) sins f sins+ i ds ie p
(--) s (--) s(ep ds

Therefore by virtue of the second mean value theorem for the
Riemann integral we have

1 (s-)e C’((16) ds < 1 + log_
(s_)+e

where C’ is a constant independent of e. Since q-O(]x]--"),
Dq-O( x ]--") ( x) (] Z -1, 2), and t-pO, by means of (12)
and (16) we get (14). By virtue of (11), (14), Lemma 4, theorem 5
in [3 and Lebesque’s theorem we get (13).

By virtue of (12), (15), (16) and Lebesque’s theorem for
we have

(17)

Now we shall prove

(18) lim d2 20(X,

Since p=t-(]x-yl+ly-zl+lz-ul+[u-vlvv’), by virtue of Lem-
ma 4 and Riemann-Lebesque’s theorem we have

(19) lim d2 ,O(x, ,),Ldx O.

Let p-t be fixed. Then we see thatp as t. Consequently
an argument similar to the one used in proving (13) gives (20):
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(20) lim d2O(x, 2)Jdx-O (k- 1, 3).
t-ooo

By means of (17), (19), and (20) we get (18), which gives

(-s)O() P(+is)}ds 0(21) lim lim d e(+)_
(-s)+

In the same way we have

lim lim e+" (2 )20(2)’ p(s+ i))g O._
(-)+s

his and (21) gives (10). hus the desired equality (7) is proved.
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