105. On Certain Condition for the Principle of Limiting Amplitude. II

By Kôji Kubota and Taira Shirota
Department of Mathematics, Hokkaido University
(Comm. by Kinjirô Kunugı, m.J.A., June 12, 1967)

1. Introduction and results. We consider the problem

$$
\begin{align*}
& {\left[\frac{\partial^{2}}{\partial t^{2}}-\Delta+q(x)\right] u(x, t)=0 \quad(t>0),} \tag{1}\\
& u(x, 0)=0, \quad \frac{\partial u}{\partial t}(x, 0)=f(x)
\end{align*}
$$

where x is a point of 3 -dimensional Euclidean space $E=R^{3}$, and Δ denotes the Laplace operator in E.

In an earlier paper [1], for the case that q has compact support we proved that under the certain condition the principle of limit amplitude for the problem (1) is valid if and only if there exists no solution $\omega \notin L^{2}(E)$ of the equation $(-\Delta+q) \omega=0$ satisfying conditions $\omega=O\left(|x|^{-1}\right), \frac{\partial \omega}{\partial x_{i}}=O\left(|x|^{-2}\right) \quad(|x| \rightarrow \infty)$ (see [2]).

In the present paper we shall prove the same one for the case that the support of q is not compact.

Through the present paper $q(x)$ and $f(x)$ are assumed to satisfy the following conditions $\left(C_{1}\right),\left(C_{2}\right)$, and (C_{3}):
$\left(C_{1}\right) \quad q(x)$ is a locally Hölder continuous real-valued function and behaves like $O\left(|x|^{-2-\alpha}\right)(\alpha>0)$ at infinity.

By A we denote the unique self-adjoint extension in $L^{2}(E)$ of $-\Delta+q$ defined on $C_{0}^{\infty}(E)$.
$\left(C_{2}\right) \quad A$ has no eigenvalue.
Then A is positive definite.
$\left(C_{3}\right) \quad f$ belongs to the domain $D\left(A^{\frac{1}{2}}\right)$ of the self-adjoint operator $A^{\frac{1}{2}}$ and behaves like $O\left(|x|^{3-\alpha}\right)$ at infinity.

Under the assumptions $\left(C_{1}\right),\left(C_{2}\right)$, and $\left(C_{3}\right)$ we have the followings:
Theorem 1. Suppose that $\langle f, \omega\rangle=0$, where ω is the preceding one and $\langle f, \omega\rangle$ denotes $\int_{E} f(x) \omega(x) d x$. Then for the solution $u(t) \equiv u(x, t)$ of (1) we have

$$
\lim _{t \rightarrow \infty}(u(t), \varphi)_{L^{2}(E)}=0 \quad \text { for all } \varphi \in L^{2}(E)
$$

and

$$
\lim _{t \rightarrow \infty}\|u(t)\|_{L^{2}(K)}=0 \quad \text { for all compact } K \subset E
$$

Theorem 2. Suppose that $q \in C^{2}(E)$ and $q=O\left(|x|^{-3-\alpha}\right), D^{\beta} q$ $=O\left(|x|^{-2-\alpha}\right)(|x| \rightarrow \infty)(|\beta|=1,2)$. Then the solution of (1) is such that for any $\varphi \in L^{2}(E)$ satisfying the condition $\varphi=O\left(|x|^{-3-\alpha}\right)(|x| \rightarrow \infty)$ we have

$$
\lim _{t \rightarrow \infty}\langle u(t), \varphi\rangle=4 \pi\langle\varphi, \omega\rangle\langle f, \omega\rangle\langle q, w\rangle^{-1},
$$

where ω is the above one.
2. Proof of Theorem 1. Let us define an operator for functions in $L^{6}(E)$ by $T \varphi(x)=-\frac{1}{4 \pi} \int_{E} \frac{q(y) \varphi(y)}{|x-y|} d y \quad\left(\varphi \in L^{6}\right)$. Then by virtue of Lemma 3.2 in [4] we have

Lemma 1. 1) T is a compact operator on L^{6} and the adjoint operator T^{*} of T with respect to the inner product \langle,$\rangle is a$ compact operator on $L^{\frac{f}{b}}$ given as follows:

$$
T^{*} \omega^{\prime}(x)=-\frac{1}{4 \pi} q(x) \int_{E} \frac{\omega^{\prime}(y)}{|x-y|} d y \quad\left(\omega^{\prime} \in L^{\frac{6}{5}}\right)
$$

2) By M, M^{\prime} we denote the subspaces $\left\{\omega \in L^{6} ;(I-T) \omega=0\right\}$, $\left\{\omega^{\prime} \in L^{\frac{6}{6}} ;\left(I-T^{*}\right) \omega^{\prime}=0\right\}$ of $L^{6}, L^{\frac{6}{8}}$ respectively. Then we have that $\operatorname{dim} M=\operatorname{dim} M^{\prime} \leqq 1$ and that $\langle q, \omega\rangle \neq 0$ for $\omega \in M(\omega \neq 0)$. Furthermore, for $\omega \in M$ we have that $\omega \in C^{2}(E), \omega=O\left(|x|^{-1}\right), \frac{\partial \omega}{\partial x_{i}}=O\left(|x|^{-2}\right)$ $(|x| \rightarrow \infty)$ and for $\omega^{\prime} \in M^{\prime}$ we have that $\omega^{\prime} \in C^{0}(E), \omega^{\prime}=O\left(|x|^{-3-\alpha}\right)$ ($|x| \rightarrow \infty$).

By virtue of Lemma 1 and Riesz-Schauder's theory we have
Lemma 2. Suppose that $\varphi \in L^{2}(E), \varphi=O\left(|x|^{-3-d}\right)(|x| \rightarrow \infty)$, and $\langle\varphi, \omega\rangle=0$ for $\omega \in M$. Then we have that $\varphi \in R\left(A^{\frac{1}{2}}\right)$, where $R\left(A^{\frac{1}{2}}\right)$ denotes therange of $A^{\frac{1}{2}}$.

Proof of Theorem 1. It follows from Lemma 2 and theorem 6 in [4] that $\lim _{t \rightarrow \infty}(u(t), \varphi)_{L^{2}(E)}=0$ for all $\varphi \in L^{2}(E)$.

Lemma 2 and the first part of Theorem 1 and an argument similar to the one used in proving Lemma 4.1 in [5] give that $\lim _{t \rightarrow \infty}\|u(t)\|_{L^{2}(K)}=0$ for all compact $K \subset E$.
3. Proof of Theorem 2. Suppose that there exist functions $\omega \in M$ such that $\omega \neq 0$. Then 2) of Lemma 1 implies that $\operatorname{dim} M=1$. Therefore, taking $\omega \in M$ such that $\langle q, \omega\rangle=1$, we have only to prove

$$
\begin{equation*}
\lim _{t \rightarrow \infty}\langle u(t), q\rangle=4 \pi\langle f, \omega\rangle . \tag{2}
\end{equation*}
$$

To this we use the following
Lemma 3. Let $a>0$. Then $u(x, t)=\frac{1}{2 \pi i} \int_{a-i \infty}^{a+i \infty} e^{s^{t}} R\left(-\zeta^{2}\right) f d \zeta$ is the solution of the problem (1), where $R\left(-\zeta^{2}\right) f$ denotes $\left(A+\zeta^{2}\right)^{-1} f$. Now we shall prove (2). Since A has no eigenvalue, by virtue
of theorem 6 in [4] we see that $\frac{d}{d \lambda}\left\langle E_{\lambda} f, q\right\rangle \in L^{1}(0, \infty)$, where E_{λ} is the resolution of the identity generated by the operator A. Therefore by virtue of Lemma 3 and Fubini's theorem we have

$$
\begin{aligned}
&\langle u(t), q\rangle=\frac{1}{2 \pi i} \int_{0}^{\infty} \frac{d}{d \lambda}\left\langle E_{\lambda} f, q\right\rangle d \lambda \int_{a-i \infty}^{a+i \infty} \frac{e^{\xi t}}{\lambda+\zeta^{2}} d \zeta \\
&=\frac{1}{2 \pi i} \int_{0}^{\infty} \frac{d}{d \lambda}\left\langle E_{\lambda} f, q\right\rangle d \lambda \int_{\Gamma_{1}+\Gamma_{2}} \frac{e^{\zeta t}}{\lambda+\zeta^{2}} d \zeta+\int_{N^{2}}^{\infty} \frac{\sin \sqrt{\lambda} t}{\sqrt{\lambda}} d\left\langle E_{\lambda} f, q\right\rangle \\
& \quad \text { for } N>2 a,
\end{aligned}
$$

where Γ_{1} and Γ_{2} are the curves

$$
\begin{aligned}
& \{s-i N ; 0<s \leqq a\} \cup\{a+i s ;-N<s<N\} \cup\{s+i N ; 0<s \leqq a\}, \\
& \{s+i N ;-a \leqq s<0\} \cup\{-a+i s ;-N<s<N\} \cup\{s-i N ;-a \leqq s<0\}
\end{aligned}
$$

taken in the positive direction.
We can take N so large that $\left|\int_{N^{2}}^{\infty} \frac{\sin \sqrt{\lambda} t}{\sqrt{\lambda}} d\left\langle E_{\lambda} f, q\right\rangle\right|$ becomes sufficiently small uniformly with respect to $t>0$. Let N fix sufficiently large. Since on $\Gamma_{2}, \operatorname{Re} \zeta<0$, by virtue of Lebesque's theorem we have

$$
\lim _{t \rightarrow \infty} \int_{0}^{\infty} \frac{d}{d \lambda}\left\langle E_{\lambda} f, q\right\rangle d \lambda \int_{\Gamma_{2}} \frac{e^{\zeta t}}{\lambda+\zeta^{2}} d \zeta=0
$$

Consequently we have only to prove

$$
\begin{equation*}
\lim _{t \rightarrow \infty} \int_{0}^{\infty} \frac{d}{d \lambda}\left\langle E_{\lambda} f, q\right\rangle d \lambda \int_{\Gamma_{1}} \frac{e^{\zeta t}}{\lambda+\zeta^{2}} d \zeta=8 \pi^{2} i\langle f, \omega\rangle \tag{3}
\end{equation*}
$$

Since we have that $R\left(-\zeta^{2}\right) f=\psi_{\zeta}+T_{\zeta} R\left(-\zeta^{2}\right) f$ and $\left\langle R\left(-\zeta^{2}\right) f, q\right\rangle$ $=4 \pi \frac{1}{\zeta}\left\langle-\psi_{\zeta}, q \omega\right\rangle+\zeta\left\langle R\left(-\zeta^{2}\right) f, p(\zeta)\right\rangle$, by virtue of Fubini's theorem we have
(4) $\int_{0}^{\infty} \frac{d}{d \lambda}\left\langle E_{\lambda} f, q\right\rangle d \lambda \int_{\Gamma_{1}} \frac{e^{\zeta t}}{\lambda+\zeta^{2}} d \zeta$

$$
=4 \pi\langle f, \omega\rangle \int_{\Gamma_{1}} \frac{e^{\zeta t}}{\zeta} d \zeta+\int_{\Gamma_{1}} e^{\zeta t} F(\zeta) d \zeta+\int_{\Gamma_{1}} \zeta e^{s^{\xi}}\left\langle R\left(-\zeta^{2}\right) f, T_{\xi}^{* 3} p(\zeta)\right\rangle d \zeta
$$

Here

$$
\begin{aligned}
& F(\zeta)=\int f(y) q(x) \omega(x) d x d y \int_{0}^{1} e^{-\zeta|x-y| \tau} d \tau+\zeta \sum_{j=0}^{2}\left\langle T_{\zeta^{j}} \psi_{\zeta}, p(\zeta)\right\rangle \\
& p(x, \zeta)=q(x) \int q(y) \omega(y)|x-y| d x d y \int_{0}^{1} d \tau^{\prime} \int_{0}^{1} \tau e^{-\zeta|x-y| \tau \tau^{\prime}} d \tau \\
& \psi_{\zeta}(x)=\frac{1}{4 \pi} \int \frac{e^{-\zeta|x-y|}}{|x-y|} f(y) d y \\
& T_{\zeta} \psi(x)=-\frac{1}{4 \pi} \int \frac{e^{-\zeta|x-y|}}{|x-y|} q(y) \psi(y) d y
\end{aligned}
$$

$$
\begin{aligned}
& T_{\zeta}^{*} \psi(x)=-\frac{1}{4 \pi} q(x) \int \frac{e^{-\zeta|x-y|}}{|x-y|} \psi(y) d y, \\
& T^{0} \psi(x)=\psi(x), \quad T^{j} \psi(x)=T\left(T^{j-1} \psi\right)(x) \quad(j=1,2,3)
\end{aligned}
$$

Then without difficulty we have

$$
\begin{align*}
& \lim _{t \rightarrow \infty} 4 \pi\langle f, \omega\rangle \int_{\Gamma_{1}} \frac{e^{\zeta t}}{\zeta} d \zeta=8 \pi^{2} i\langle f, \omega\rangle \tag{5}\\
& \lim _{t \rightarrow \infty} \int_{r_{1}} \frac{e^{\zeta t}}{\zeta} F(\zeta) d \zeta=0 \tag{6}
\end{align*}
$$

Therefore we have only to prove the following

$$
\begin{equation*}
\lim _{t \rightarrow \infty} \int_{\Gamma_{1}} \zeta e^{\xi^{t}}\left\langle R\left(-\zeta^{2}\right) f, p_{3}(\zeta)\right\rangle d \zeta=0, \tag{7}
\end{equation*}
$$

where $p_{3}(x, \zeta)=T_{\zeta}^{* 3} p(x, \zeta)$.
To do it we use the following
Lemma 4. For $\lambda>0$ we set $\theta(\lambda) \equiv \theta(x, \lambda)=\frac{1}{2 \pi i}\left(u_{+}(x, \lambda)-u_{-}(x, \lambda)\right)$, where $u_{ \pm}(x, \lambda)=R(\lambda \pm i 0) f(x) . \quad B y C_{3+\alpha}^{2}$ we denote the Banach space $\left\{\varphi \in C^{2}(E), \sup _{x \in E,|\beta| \leq 2}\left|D^{\beta} \varphi(x)\right|\left(1+|x|^{2}\right)^{\frac{3+\alpha}{2}}<\infty\right\}$ with the norm $\|\varphi\|_{c_{3+\alpha}^{2}}$
 nuclear operator from $C_{3+\alpha}^{2}$ to $L_{\lambda}^{1}(0, \infty)$ and $\left\|T_{\lambda}\right\|_{\left(\sigma_{3+\alpha}^{2}\right) *}=\|\theta(\lambda)\|_{\left(\sigma_{3+\alpha}^{2}\right) *}$ belongs to $L_{\lambda}^{1}(0, \infty)$.

Proof of (7). By virtue of Lemma 4 and Fubini's theorem we have

$$
\begin{equation*}
\int_{\Gamma_{1}} \zeta e^{\zeta t}\left\langle R\left(-\zeta^{2}\right) f, p_{3}(\zeta)\right\rangle d \zeta=\lim _{\varepsilon \rightarrow 0} \int_{0}^{\infty} d \lambda \int_{r_{\varepsilon}} \frac{\left\langle\theta(\lambda), p_{3}(\zeta)\right\rangle}{\lambda+\zeta^{2}} \zeta e^{s^{t}} d \zeta, \tag{8}
\end{equation*}
$$

where Γ_{ε} is the path obtained replacing a by ε in Γ_{1}. Furthermore by virtue of Lemma 4, Lebesque's theorem, theorem 4 in [3] and Riemann-Lebesque's theorem we see that we have only to prove

$$
\begin{equation*}
\lim _{t \rightarrow \infty} \lim _{\varepsilon \rightarrow 0} \int_{0}^{4 N^{2}} d \lambda \int_{\varepsilon-i N}^{\varepsilon+i N} \frac{\left\langle\theta(\lambda), p_{3}(\zeta)\right\rangle}{\lambda+\zeta^{2}} \zeta e^{\zeta t} d \zeta=0 . \tag{9}
\end{equation*}
$$

To this we have only to prove

$$
\begin{equation*}
\lim _{t \rightarrow \infty} \lim _{\varepsilon \rightarrow 0} \int_{0}^{4 N^{2}} d \lambda \int_{-N}^{N} e^{(\varepsilon+i s) t} \frac{(\lambda-s)\left\langle\lambda \theta\left(\lambda^{2}\right), p_{3}(\varepsilon+i s)\right\rangle}{(\lambda-s)^{2}+\varepsilon^{2}} d s=0 . \tag{10}
\end{equation*}
$$

Set $\rho=t-\left(|x-y|+|y-z|+|z-u|+|u-v| \tau \tau^{\prime}\right)$. Then by virtue of Fubini's theorem, for fixed $t>0$ and fixed $\varepsilon>0$ we have

$$
\begin{equation*}
\int_{-N}^{N} e^{(\varepsilon+i s) t} \frac{(\lambda-s)\left\langle\lambda \theta\left(\lambda^{2}\right), p_{3}(\varepsilon+i s)\right\rangle}{(\lambda-s)^{2}+\varepsilon^{2}} d s=\left(\frac{1}{4 \pi}\right)^{3} e^{\varepsilon t} \int \lambda \theta\left(x, \lambda^{2}\right) \varphi_{\varepsilon, t}(x) d x, \tag{11}
\end{equation*}
$$

where

$$
\begin{align*}
\varphi_{\varepsilon, t}(x)= & q(x) \int \frac{q(y)}{|x-y|} d y \int \frac{q(z)}{|y-z|} d z \int \frac{q(u)}{|z-u|} d u \tag{12}\\
& \times \int|u-v| q(v) \omega(v) d v \int_{0}^{1} d \tau^{\prime} \int_{0}^{1} \tau e^{-\varepsilon(t-\rho)} d \tau \int_{-N}^{N} \frac{(s-\lambda) e^{i \rho s}}{(s-\lambda)^{2}+\varepsilon^{2}} d s .
\end{align*}
$$

First we shall prove

$$
\begin{gather*}
\lim _{\varepsilon \rightarrow 0} \int_{0}^{N} d \lambda \int_{-N}^{N} e^{(\varepsilon+i s) t} \frac{(\lambda-s)\left\langle\lambda \theta\left(\lambda^{2}\right), p_{3}(\varepsilon+i s)\right\rangle}{(\lambda-s)^{2}+\varepsilon^{2}} d s \tag{13}\\
=\left(\frac{1}{4 \pi}\right)^{3} \int_{0}^{N} d \lambda \int \lambda \theta\left(x, \lambda^{2}\right) \lim _{\varepsilon \rightarrow 0} \varphi_{\varepsilon, t}(x) d x .
\end{gather*}
$$

Let $t>0$ be fixed. Then we see that there exists a constant C such that for any $\lambda<N$ we have

$$
\begin{equation*}
\sup _{x \in E,|\beta| \leqq 2}\left|D^{\beta} \varphi_{\varepsilon, t}(x)\right|\left(1+|x|^{\frac{3+\alpha}{2}} \leqq C\left(1+\log \frac{N+\lambda}{N-\lambda}\right)\right. \tag{14}
\end{equation*}
$$

$$
\text { for all } \varepsilon \leqq \varepsilon_{0}
$$

In fact, since $s \cos s$ is an odd function, for $\lambda<N$ we have

$$
\begin{align*}
\int_{-N}^{N} \frac{(s-\lambda) e^{i \rho s}}{(s-\lambda)^{2}+\varepsilon^{2}} d s= & e^{i \lambda \rho}\left[\int_{(-N-\lambda) \rho}^{(\lambda-N) \rho} \frac{\cos s}{s} d s-\varepsilon^{2} \rho^{2} \int_{(-N-\lambda) \rho}^{(\lambda-N) \rho} \frac{\cos s}{s\left(s^{2}+\varepsilon^{2} \rho^{2}\right)} d s\right. \tag{15}\\
& \left.+i \int_{(-N-\lambda) \rho}^{(N-\lambda) \rho} \frac{\sin s}{s} d s-i \varepsilon^{2} \rho^{2} \int_{(-N-\lambda) \rho}^{(N-\lambda) \rho} \frac{\sin s}{s\left(s^{2}+\varepsilon^{2} \rho^{2}\right)} d s\right]
\end{align*}
$$

Therefore by virtue of the second mean value theorem for the Riemann integral we have

$$
\begin{equation*}
\left|\int_{-N}^{N} \frac{(s-\lambda) e^{i \rho s}}{(s-\lambda)^{2}+\varepsilon^{2}} d s\right| \leqq C^{\prime}\left(1+\log \frac{N+\lambda}{N-\lambda}\right) \tag{16}
\end{equation*}
$$

where C^{\prime} is a constant independent of ε. Since $q=O\left(|x|^{-3-\alpha}\right)$, $D^{\beta} q=O\left(|x|^{-2-\alpha}\right)(|x| \rightarrow \infty)(|\beta|=1,2)$, and $t-\rho \geqq 0$, by means of (12) and (16) we get (14). By virtue of (11), (14), Lemma 4, theorem 5 in [3] and Lebesque's theorem we get (13).

By virtue of (12), (15), (16) and Lebesque's theorem for $\lambda<N$ we have

$$
\begin{align*}
\varphi_{t}(x) \equiv & \lim _{\varepsilon \rightarrow 0} \varphi_{\varepsilon, t}(x)=q(x) \int \frac{q(y)}{|x-y|} d y \int \frac{q(z)}{|y-z|} d z \int \frac{q(u)}{|z-u|} d u \tag{17}\\
& \times \int_{|u-v|} \mid q(v) \omega(v) d v \int_{0}^{1} d \tau^{\prime} \int_{0}^{1} \tau e^{i \lambda \rho \rho} d \tau \\
& \times\left[\int_{(-N-\lambda) \rho}^{(\lambda-N) \rho} \frac{\cos s}{s} d s+i \pi+i\left(\int_{(-N-\lambda) \rho}^{(N-\lambda) \rho} \frac{\sin s}{s} d s-\pi\right)\right] \\
\equiv & J_{1}+J_{2}+J_{3} .
\end{align*}
$$

Now we shall prove

$$
\begin{equation*}
\lim _{t \rightarrow \infty} \int_{0}^{N} d \lambda \int \lambda \theta\left(x, \lambda^{2}\right) \varphi_{t}(x) d x=0 \tag{18}
\end{equation*}
$$

Since $\rho=t-\left(|x-y|+|y-z|+|z-u|+|u-v| \tau \tau^{\prime}\right)$, by virtue of Lemma 4 and Riemann-Lebesque's theorem we have

$$
\begin{equation*}
\lim _{t \rightarrow \infty} \int_{0}^{N} d \lambda \int \lambda \theta\left(x, \lambda^{2}\right) J_{2} d x=0 \tag{19}
\end{equation*}
$$

Let $\rho-t$ be fixed. Then we see that $\rho \rightarrow \infty$ as $t \rightarrow \infty$. Consequently an argument similar to the one used in proving (13) gives (20):

$$
\begin{equation*}
\lim _{t \rightarrow \infty} \int_{0}^{N} d \lambda \int \lambda \theta\left(x, \lambda^{2}\right) J_{k} d x=0 \quad(k=1,3) \tag{20}
\end{equation*}
$$

By means of (17), (19), and (20) we get (18), which gives

$$
\begin{equation*}
\lim _{t \rightarrow \infty} \lim _{\varepsilon \rightarrow 0} \int_{0}^{N} d \lambda \int_{-N}^{N} e^{(\varepsilon+i s) t} \frac{(\lambda-s)\left\langle\lambda \theta\left(\lambda^{2}\right), p_{3}(\varepsilon+i s)\right\rangle}{(\lambda-s)^{2}+\varepsilon^{2}} d s=0 . \tag{21}
\end{equation*}
$$

In the same way we have

$$
\lim _{t \rightarrow \infty} \lim _{\varepsilon \rightarrow 0} \int_{N}^{2 N} d \lambda \int_{-N}^{N} e^{(\varepsilon+i s) t} \frac{(\lambda-s)\left\langle\lambda \theta\left(\lambda^{2}\right), p_{3}(\varepsilon+i s)\right\rangle}{(\lambda-s)^{2}+\varepsilon^{2}} d s=0 .
$$

This and (21) gives (10). Thus the desired equality (7) is proved.

References

[1] K. Kubota and T. Shirota: On certain condition for the principle of limiting amplitude. Proc. Japan Acad., 42, 1155-1160 (1966).
[2] K. Asano and T. Shirota: Remarks on eigenfunctions of the operators $-\Delta+q$. Proc. Japan Acad., 42, 1044-1049 (1966).
[3] D. M. Eìdus: The principle of limiting obsorption. Mat. Sb., 57 (99), 13-44 (1962); A. M. S. Transl. series 2 (47), 157-191 (1965).
[4] T. Ikebe: Eigenfunction expansions associated with the Schroedinger operators and their applications to scattering theory. Arch. Rat. Mech. Anal., 5, 1-34 (1961).
[5] D. Thoe: Spectral theory for the wave equation with a potential term. Arch. Rat. Mech. Anal., 22, 364-406 (1966).
[6] H. G. Garnir: Les problèmes aux limites de la physique mathématique. Birkhaeuser Verlag, Basel (1958).

