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1. Introduction and results. We consider the problem

(1) [ 2 —d+a@|uw, =0 @>0)

- ou —
u(x, O)’—Oy E(xy O)——f(ﬂ’/'),

where 2 is a point of 3-dimensional Euclidean space E=R?® and 4
denotes the Laplace operator in E.

In an earlier paper [1], for the case that ¢ has compact support
we proved that under the certain condition the principle of limit
amplitude for the problem (1) is valid if and only if there exists
no solution w ¢ L*(K) of the equation (—4+q)w=0 satisfying con-

ditions w=0(| = %), g;').:O(lxl“z) (| % |—c0) (see [2]).

?

In the present paper we shall prove the same one for the case
that the support of ¢ is not compact.

Through the present paper ¢(x) and f(x) are assumed to satisfy
the following conditions (C,), (C,), and (C,):
(C) q(x) is a locally Holder continuous real-valued function and
behaves like O(|x|**) (a>0) at infinity.

By A we denote the unique self-adjoint extension in L*F) of
—A4+q defined on Cy(E).
(C;) A has no etgenvalue.

Then A is positive definite,

(C;) f belongs to the domain D(A%) of the self-adjoint operator
A% and behaves like O(|z =) at infinity.
Under the assumptions (C,), (C,), and (C;) we have the followings:
Theorem 1. Suppose that {f, wy=0, where @ 1is the pre-
ceding one and {f,w®) denotes S f@)w(x)dx. Then for the solution
w(t)y=u(x, t) of (1) we have 8
ltl_I.E u(t), ©)r2m=0 Sor all ¢ e LAE),
and
ltljg | w() || 220 =0 Sor all compact KCE.
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Theorem 2. Suppose that qe CYE) and ¢g=0(x|**), Dfq
=0(|z|7*) (Jx|—o0) (|8]|=1,2). Then the solution of (1) ts such
that for any ¢ € LA(K) satisfying the condition ¢ =0(|x|**) (|@|—o0)
we have

lim Cu(t), py=4nl, @) {f, W) <g, W)™,
where @ s the above one.

2. Proof of Theorem 1. Let us define an operator for func-
tions in LAE) by Te(w)=— %S ql(g)ﬂo(f‘/l) dy (¢ e LY. Then by
virtue of Lemma 3.2 in [4] we have

Lemma 1. 1) T 4s a compact operator on L°® and the adjoint
operator T* of T with respect to the immer product { , > is a

compact operator on L% given as follows:
T*6/ ()= — q( 2| |“’ (y)l dy  (oeLb).
x
2) By M, M we denote the subspaces {we L% (I—T)w=0},
{a)’eL%; (I—-T*)w' =0} of L° L% respectively. Then we have that
dim M =dim M’'<1 and that {q, w)>+#0 for w e M (w+0). Further-

more, for @€ M we have that e CYE), w=0(x|™), g;o =0(|x |
(& |—o0) and for o' eM' we have that @' € C(E), ' =0( x|
(J@ |—00).

By virtue of Lemma 1 and Riesz-Schauder’s theory we have

Lemma 2. Suppose that ¢ € LA(E), o=0(|x |[*?%) (|2 |—o0), and
Lo, @>=0 for we M. Then we have that ¢ € R(AY), where R(AD)
denotes therange of A%.

Proof of Theorem 1. It follows from Lemma 2 and theorem 6
in [4] that 11m (W(t), ©)rem =0 for all ¢ e LX(F).

Lemma 2 ‘and the first part of Theorem 1 and an argument

similar to the one used in proving Lemma 4.1 in [5] give that
lim || w(t) ||;2c,=0 for all compact KCE.
o 3. Proof of Theorem 2. Suppose that there exist functions
@ € M such that 0. Then 2) of Lemma 1 implies that dim M=1.
Therefore, taking w € M such that {¢, w>=1, we have only to prove
(2) lim {u(t), g»=47(f, o).

To this we use the following

a—1i%

Lemma 3. Let a>0. Then u(oc,t)=571}~,sa+me§‘R(~C2)de is
A

the solution of the problem (1), where R(—C®f denotes (A+C)'f.
Now we shall prove (2). Since A has no eigenvalue, by virtue
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of theorem 6 in [4] we see that %(Ezf , 9> € L0, o0), where E,

is the resolution of the identity generated by the operator A.
Therefore by virtue of Lemma 3 and Fubini’s theorem we have

e, == | L<m s, par| jf e

=i.rﬁ<Ezf, wal

21 Jo

©siny/ 1t
ag+|" V2 acEf, o)

Z—I-Cz
for N>2a,
where I, and [, are the curves
{s—iN; 0<s=a}U{a+1is; —N<s<N}U{s+iN; 0<s=a},
{s+iN; —a<s<0lU{—a+1is; —N<s<N}U{s—iN; —a<s<0}
taken in the positive direction.

We can take N so large that ‘S: siny 2t td(El f,q>| becomes
N
sufficiently small uniformly with respect to ¢t >0. Let N fix sufficiently

large. Since on 7', Re <0, by virtue of Lebesque’s theorem we
have

st _
}iTS _”<E‘f’q>dzg z+c2dc—o'

Consequently we have only to prove
(3) lim |2 r, ayda| € dr=gwics, ).

Since we have that R(—(%)f =+ T:R(—)f and {R(—-C)f, ¢>
:4n_%,<—q/fg, gy +R(—T)f, p(O), by virtue of Fubini’s theorem

we have

= d
(1) | 2<mf o]

=4 0p | Cat| PO e R-0F, TEpEbL.
Here

FQ)= | f@a@@dady| e de + 32 Tépe, pO,

P, c>=q<m>§q<y>w<y> 2=y | dody| x| cese-neea,

@)= | E5 rwpay,

| 2 —

vl
Tovw)=— | O v,
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Tev@=—pa@|

Ty () = yr(2), Tig(x)=T(T"'y)x)  (1=1,2,3).
Then without difficulty we have

(5) 11m47t<f,w>8 ' 4t =8l f, w,

(6) lim Sr % F(Q)d¢=0.

t—oo

Therefore we have only to prove the following
(7) lim || o CR(=00F, pUO>E=0,
where py(x, {)= T#p(x, Q).
To do it we use the following
Lemma 4. For 1>0 we set 0(2)50(x,l)=—271r—i(u+(x,l)—u_(x,2)),

where uy(x, 2)=R(A+10)f(x). By CSM we denote the Banach space
{o e CX(E), sup IDﬁgo(m)l(l-l—lwlz) E <oo} with the norm |[¢lle,
= sup ID‘*so(x)l(l-i-lxlz)“ Then Ti(¢)=<0(2), ¢ (p€Csia) 18 @

2€E, |fl=
nuclear opemto'r from CZ., to L3(0, oo) and || T, ngw)*—llﬁ(z) l|<0§+a)*
belongs to L3(0, o).

Proof of (7). By virtue of Lemma 4 and Fubini’s theorem we

have
<R tim (x| 90,2
(8) |, corCR(=007, poyac=tim | aa| <PE:BLD corar,

where I". is the path obtained replacing a by ¢ in I";,. Furthermore
by virtue of Lemma 4, Lebesque’s theorem, theorem 4 in [3] and
Riemann-Lebesque’s theorem we see that we have only to prove

(9) lim lim S‘Nz Y“N <"(Z)’ ps(c» CestdC =0,

t—oo -0 0 e—iN
To this we have only to prove
(10) lim lim S4 2dlg glerislt (A—58)X20(2), py(e+18)) ds=
0 (A—s)+¢
Set p=t—(|x—y|+|y—=2|+|2—u|+|u—v|77’). Then by virtue
of Fubini’s theorem, for fixed ¢>0 and fixed ¢>0 we have

v (s+is)t(2—-s)<zﬁ(22)’p3(e+is)> _ 13 . 2
(11) S_Ne T ds_<E>e Slﬁ(x,l)goe,t(x)dx,

t—oo -0

where

12 pu@)=g@| 10 ay| D aa] 1

x S| I q(v)a)(v)dvgldf’glz'e“‘““’”drSN (5= 4
0 0 —N (s — 2)2 gt
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First we shall prove
(13) lim SNdZSN e<e+is)t(l_3)<26(22), pa(s‘l"is»ds
0 ~N (A—s)+¢é
—(LY{Maa{ 200, m i d
=( o)\ arlo@, #1im g, (@da.
Let t>0 be fixed. Then we see that there exists a constant C
such that for any 1<N we have

a4 sup_ | D, (@) | (Lo ) = <C(L+1og T 14)

Z€E,|B=2

e—0

for all e<e,.
In fact, since scoss is an odd function, for 2<N we have

(15) SN is_z)eips ds:e“p[g(z—-l‘ﬁp cos Sds...ez 2S(Z-—-N)p CoS 8
—N (3—2)2—1-82 (—N—De 8 (N2 8(82—|—82‘02)

+i§w_m Em—sds—iszngw—m __sins ds:l.
(—N-Dp 8§ (~v-20 8(8°+€%0%)
Therefore by virtue of the second mean value theorem for the
Riemann integral we have
Yo (s—2)etet ) N-|—2>

(9 I (8_2)2%2013\ =0/(1+1og 7).
where C’ is a constant independent of ¢. Since ¢=0(z|%),
Dfg=0( x| (Ja|—o) (|8]=1,2), and t—p=0, by means of (12)
and (16) we get (14). By virtue of (11), (14), Lemma 4, theorem 5
in [8] and Lebesque’s theorem we get (13).

By virtue of (12), (15), (16) and Lebesque’s theorem for 1<N
we have

A7) @)=l goe,t(x):q(x)g |9‘61(_y;| dyg lg(_z)z I sz | ;I(_u;l du

X S| U— | q(v)w(v)dvgldr’glre“”dr
0 0

X[S(z—mp Eossds—l—m—l—i(gm_m iirls—ds—n'ﬂ

(—N—Dp 8 (—N—Dp 8
EJ1+J2+J3.
Now we shall prove
(18) lim SNdZSM(x, o (x)de=0.

Since p=t—(|z—y|+|y—=z|+|2—u|+|u—v]|77’), by virtue of Lem-
ma, 4 and Riemann-Lebesque’s theorem we have
(19) lim SNdlgw(x, 2)Jde =0,

0

t—oo
Let p—t be fixed. Then we see that p—oo ag t—oo. Consequently
an argument similar to the one used in proving (13) gives (20):
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(20) lim SNdZSM(x, BJds=0 (k=1 3).
t—oo 0
By means of (17), (19), and (20) we get (18), which gives
@1) lim lim SNszN guerin: A= 8KAOX), pi(e+18)) 3o ¢
t—co €20 Jo -N (2—8)2+82

In the same way we have
lim lim [ "az]" gt 2= 9AD PAEL ) g5 o,
vy o Jew (2—s)’+¢
This and (21) gives (10). Thus the desired equality (7) is proved.

t—oo -0
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