94. On Integers Expressible as a Sum of Two Powers. II

By Palahenedi Hewage Diananda
Department of Mathematics, University of Singapore, Singapore

(Comm. by Zyoiti Suetuna, m.J.A., June 12, 1967)

1. In a recent paper [2] we proved the following results:

Theorem 1. There is n_{0} such that for every $n \geqq n_{0}$ there are positive integers x and y satisfying

$$
n<x^{h}+y^{h}<n+c n^{a},
$$

where h is any integer $\geqq 2$,

$$
a=\left(1-\frac{1}{h}\right)^{2} \quad \text { and } \quad c=h^{2-(1 / h)}
$$

Theorem 2. For any $\varepsilon>0$, there is $n_{0}=n_{0}(\varepsilon)$ such that for every $n \geqq n_{0}$ there are positive integers x and y satisfying

$$
n<x^{f}+y^{h}<n+(c+\varepsilon) n^{a},
$$

where f and h are any integers $\geqq 2$,

$$
a=\left(1-\frac{1}{f}\right)\left(1-\frac{1}{h}\right) \quad \text { and } \quad c=h f^{1-(1 / h)} .
$$

The case $h=2$ of Theorem 1 and the case $f=h>2$ of Theorem 2 are due to Uchiyama [3], while the case $f=h=2$ of Theorem 2 is due to Bambah and Chowla [1].

As pointed out in Remark 4 of [2] we can replace c, in Theorem 2, by $C=f h^{1-(1 / \rho)}$; but the theorem with c is the better result if $f>h$.

In this note we obtain the following refinement of Theorem 2 and generalization of Theorem 1:

Theorem 3. There is n_{0} such that for every $n \geqq n_{0}$ there are positive integers x and y satisfying

$$
n<x^{f}+y^{h}<n+c n^{a},
$$

where f and h are any integers such that $f \geqq h \geqq 2$,

$$
a=\left(1-\frac{1}{f}\right)\left(1-\frac{1}{h}\right) \quad \text { and } \quad c=h f^{1-(1 / h)}
$$

This follows from the case $h=2$ of Theorem 1 and
Lemma 1. Theorem 3 is true for $f>2$.
The proof of this lemma has similarities with, but is more complicated than, the proofs of Theorems 1 and 2 and their special cases in [1], [2], and [3].
2. Proof of Lemma 1. We write [t] for the greatest integer $\leqq t$.

Let b be a fixed constant such that

$$
\frac{1}{2} f<b<f
$$

Suppose first that
(1)

$$
m=\left[n^{1 / f}\right] \geqq\left(n-b n^{1-(1 / f)}\right)^{1 / f} .
$$

Then

$$
\begin{aligned}
n & <m^{\rho}+\left[\left(n-m^{f}\right)^{1 / h}+1\right]^{h} \\
& \leqq m^{\rho}+\left(\left(n-m^{\rho}\right)^{1 / h}+1\right)^{h} \\
& \leqq n+h\left(b n^{1-(1 / \rho)}\right)^{1-(1 / h)}(1+o(1)) \\
& <n+c n^{a}
\end{aligned}
$$

for large n, since $b<f$ and so

$$
c=h f^{1-(1 / h)}>h b^{1-(1 / h)}
$$

Hence the lemma follows if (1) be true. We therefore assume in the rest of the proof that (1) is false; i.e., that
(2)

$$
m=\left[n^{1 / f}\right]<\left(n-b n^{1-(1 / f)}\right)^{1 / f}=M,
$$

say.
Lemma 2. Let $f \geqq 3$,

$$
N=(M+1)^{f}-M^{\rho}+1
$$

and

$$
g(n)=N-\left(N^{1 / h}-1\right)^{h} .
$$

Then $g(n)<c n^{a}$, for large n.
Proof. For large n,
$M=\left(n-b n^{1-(1 / f)}\right)^{1 / f}$

$$
=n^{1 / f}\left(1-\frac{b}{f} n^{-1 / f}+o\left(n^{-1 / f}\right)\right)
$$

$$
N=f M^{\rho-1}\left(1+\frac{1}{2}(f-1) M^{-1}+o\left(M^{-1}\right)\right)
$$

$$
=f n^{1-(1 / \rho)}\left(1-b\left(1-\frac{1}{f}\right) n^{-1 / \rho}+o\left(n^{-1 / f}\right)\right)\left(1+\frac{1}{2}(f-1) n^{-1 / \rho}+o\left(n^{-1 / f}\right)\right)
$$

$$
=f n^{1-(1 / f)}\left(1-\left(b-\frac{1}{2} f\right)\left(1-\frac{1}{f}\right) n^{-1 / f}+o\left(n^{-1 / f}\right)\right)
$$

and

$$
\begin{aligned}
g(n) & =h N^{1-(1 / h)}\left(1-\frac{1}{2}(h-1) N^{-1 / h}+o\left(N^{-1 / h}\right)\right) \\
& <h\left(f n^{1-(1 / f)}\right)^{1-(1 / h)}=c n^{a},
\end{aligned}
$$

since $b>\frac{1}{2} f$.
Suppose now that

$$
(m+1)^{\jmath}+1 \leqq n+g(n)
$$

Then Lemma 1 is clearly true. We therefore assume in the rest of the proof that

$$
\begin{equation*}
(m+1)^{\jmath}+1>n+g(n) \tag{3}
\end{equation*}
$$

Since

$$
n<m^{\rho}+\left[\left(n-m^{\rho}\right)^{1 / h}+1\right]^{h} \leqq m^{\rho}+\left(\left(n-m^{\rho}\right)^{1 / h}+1\right)^{h}
$$

Lemma 1 now follows from Lemma 2 and
Lemma 3. (2) and (3) imply that

$$
m^{f}+\left(\left(n-m^{f}\right)^{1 / h}+1\right)^{h}<n+g(n)
$$

Proof. From (3),

$$
n-m^{\rho}<(m+1)^{\rho}-m^{\rho}+1-g(n) .
$$

Clearly $(m+1)^{\jmath}-m^{\jmath}$ is a strictly increasing function of m. Hence, from (2),

$$
\begin{aligned}
n-m^{\rho} & <(M+1)^{\rho}-M^{\rho}+1-g(n) \\
& =N-g(n)=\left(N^{1 / h}-1\right)^{h} .
\end{aligned}
$$

Hence

$$
\begin{aligned}
m^{f}+\left(\left(n-m^{f}\right)^{1 / h}+1\right)^{h} & =n+\left(\left(n-m^{f}\right)^{1 / h}+1\right)^{h}-\left(n-m^{f}\right) \\
& <n+N-\left(N^{1 / h}-1\right)^{h}=n+g(n),
\end{aligned}
$$

since $\left(\left(n-m^{f}\right)^{1 / h}+1\right)^{h}-\left(n-m^{f}\right)$ is a strictly increasing function of $n-m^{f}$. This completes the proof.

References

[1] R. P. Bambah and S. Chowla: On numbers which can be expressed as a sum of two squares. Proc. Nat. Inst. Sci. India, 13, 101-103 (1947).
[2] P. H. Diananda: On integers expressible as a sum of two powers. Proc. Japan Acad., 42, 1111-1113 (1966).
[3] S. Uchiyama: On the distribution of integers representable as a sum of two h-th powers. J. Fac. Sci., Hokkaidô Univ., Ser. I, 18, 124-127 (1965).

