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1. Introduction. Prof. K. Morita [4] has introduced the
notion of M-spaces. He calls a topological space X an M-space if
there exists a normal sequence {I1,|i=1,2,---} of open coverings
of X satisfying the condition () below:

If a family & consisting of a countable number of subsets
of X has the finite intersection property and contains as a
member a subset of S(z,, 11;) for every ¢ and for some fixed
point x, of X, then N{K|Ke R +2.
Recently, T. Kando [2] has proved the following theorem.
Theorem 1. Let {A,} be a locally finite covering of a Hausdorff
space X and let each A, be a closed G,-subset of X. If each A, is
a normal M-space with respect to 1its relative topology, them the
whole space X s also a normal M-space.

In this connection he raised a problem whether Theorem 1 is
valid without the G,-condition for A, [2, p. 10537.

The purpose of this note is to give an affirmative answer to
this problem; namely, we shall prove the following theorem.

Theorem 2. Let {A,} be a locally finite closed covering of a
Hausdorff space X. If each A, is a normal M-space with respect
to its relative topology, then the whole space X is also a mormal
M-space.

Most terminologies and notations used in this note are the same
as those of J. W. Tukey [7].

We are indebted to Prof. K. Morita for valuable advices and
encouragements throughout this study.

2. Lemmas. Lemma 1. Let {A;]1=1,2} be a binary closed
covering of a Hausdorff space X. If each A;1s a normal M-space,
then X is a normal M-space.

Proof. According to a result of A. Okuyama [6] each A, is
collectionwise normal and countably paracompact, and hence by
K. Morita [5] the whole space X is also collectionwise normal and
countably paracompact.

Suppose that B(A,)NB(A,)=." Then we have J(A,)UJ(4,)
=X.” Since X is normal there exist two closed G,-subsets F, and

1) B(A) means the boundary of a set A.
2) J(A) means the interior of a set A.
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F, such that F,UF,=X and F,C3A4,)CA; (t=1,2). Hence by
Theorem 1 X is a normal M-space. We may assume, therefore,
that B(A,)NB(A)#= 2.

Now, by assumption each A; is an M-space, and hence there
exists a normal sequeuce {I{’|n=1,2, ...} of open coverings of the
subspace A; satisfying the condition (x) with respect to the subspace
A;. Moreover, we can assume that each covering 1!’ is locally
finite in A; by [2, Lemma 17.

Let us put

U, ={UNB(A)NB(A,) | UeWPIN{U e B(A)NB(A,) | U e}
for every positive integer n. Then 1, is a locally finite open
covering of B(A4,)NB(A4,); for the sake of simplicity we shall denote
the members of U, by U,., ae 2,, that is, U,={U,.|a e 2,}.

(I). By a theorem of C. H. Dowker [1] there exists a locally
finite open family B,={V..| a € 2,} of X such that U,,>(B(4,) NB(A4,))
N V. for any a¢ecR,. Moreover, we can assume V,,NA,CcU“% for
some U®el® (¢1=1,2;xe ). Since B(A,)NB(A4,) is contained in
an open set B},¥ there exists an open set G, such that B(A4,)NB(A,)
CG,cG,cBF. Let us put B ={UNJA)N(X—G) | UeUP}(i=1,2)
then 2B, =V UV UYB, is a locally finite open covering of X,

(II). Since 1, is a locally finite open covering of B(A,) N B(A4,),
by C. H. Dowker [1] there exists a locally finite open fiamily
B,={V.| e 2} of X such that U,,DB(A,)NB(A)N V,, for every
aef,. Moreover we can assume that V,,NA;,CcU“ for some
UPelli?(i=1,2;ae®,) and V,.CcS(BA)NB(A4,), B)NG, for every
acQ, Since B(A)NB(4,) is contained in an open set B, there
exists an open set G, such that B(A4)NB(A)cG,cG,cBF. Let
us put B ={UNI(A:)N(X—G,) | Ue N} i=1, 2), then BL UBP U,
is a locally finite open covering of X. There exists a locally finite
open covering 2B, such that 2B, is a star-refinement of W, and
B U BP U DB,

(III). Now, by the same procedure as in case (II) we can easily
construct by induction with respect to n(n>2) a locally finite open
family B,={V,.|aec 2,} of X, an open set G,, a locally finite open
family B of X(¢=1,2) and a locally finite open covering T, of
X which satisfy the following conditions.

(1) UnD(B(A)NB(A)) N Ve, (€ 2,).

(2) V.eNA,CcU® for some U® e, (1=1,2;ac2,).

(3) Vi TS(B(A)NB(A), B, ) NG,y (e 2,).

(4) BA)NBA)=G,cG, Bz,

(5) BY={UNJA)N(X-G,)|Uel}, (i=1,2).

3) B* means the sum of elements of a family %.
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(6) BLUBPUDB, is a locally finite open covering of X.

(7) W, is a star-refinement of BW,_, and VY UBP UDB,.

(IV). We shall prove that the normal sequence {I,} satisfies
the M-space condition (*). To prove this, let ={K,|n=1,2,---}
be any family consisting of a countable number of subsets of X
having the finite intersection property and suppose that & contains
as its member a subset K, of S(w, ,) for every » and for some
fixed point «, of X. We have to show N{K|Ke®}#@. Without
loss of generality we may assume that for every positive integer
n K,DK,.,. We distinguish the following three cases.

(1) me N SEBA)NBA), B,).

(il) =,e ml S(B(A,)NB(A4,), B,), x,e A; and {K,N A;| K, € & has
the finite intersection property for some <.

(iii) «,¢€ ﬁl S(B(A,)NB(A,), B,), x,€ A; and {K,NA;| K, e & has
the finite intersection property for some 4 and j with 7+7.

Case (i). There exists a positive integer mn, such that
%, & S(B(A,) NB(A4,), BW,,)). By (8) By ., is contained in S(B(A,) N B(4,),
2,,). Hence x, is not contained in Bj,,. On the other hand, for
every n>mn,+1 there exists an element W of 2B,_, such that
K, cS(x, BW,)cW. This set W is contained in an element U,?, of
B, for some i(¢=1 or 2) since w,¢ B}, (1 varies with n). Namely,
we have K, cU,?, for t=1 or 2. Without loss of generality we
may assume that there are infinitely many n>mn,+1 such that
K, cU,. Hence we have K, CS(z, ;") for infinitely many n
Wlth n>mn,+1. From the assumption that A, is a closed M-space

in X it follows that ﬂ K,=0.

Case (ii). Wlthout loss of generality we assume that 1=1. By
conditions (7) and (8) we have

S(o, W 12) ©S(B(A,) NB(A,), B,+.) CS(B(A,) NB(4y), B,11) G,
Hence by (5) we obtain S(x,, ,,,) N (BL*UBP*)= and so, x, is
not contained in BP*UYVBP*. Thus, we have K,  ,CS(w, B,,)
< S(x,, BL UBEP UB,)=8S(x,, B,). Consequently from (2) it follows
that K, ,,NAcCS(x, 0y"). Since A, is a closed M-space and {K,N A}
has the finite intersection property, we have ﬁ {K.NA}+@.
Therefore, of course, ﬂ K,#2. "

Case (iii). Wlthout loss of generality we assume that 1=1, j=2.
Let us put S(z,, B,)NB(A,)NB(A,)=M, for every positive integer

n; then {M,|n=1,2, ---} has the finite intersection property and
satisfies M,>M,,, for every n. Since {M,} satisfies the assumption
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of (x) in the M-space A,, we have ﬂ M,= ﬂ M,+2. Let o' be a
point of ﬂ M,. Then we shall show that S@', W) DANK,, ..

There exigté an element W of %, such that S(x,, 8W,...)TW. By
the assumption we have WNB(A,)NB(A,)#* @. Hence there exists
V.. €38, such that Wc V,,. From (2) it follows that V,,NA,cU,?
for some U/»e¢N®, Therefore, we have UP D V,.NA,DS(x,, B,.)
NA4,32'. Consequently, S(x UMM DK, NA,. Since A, is a closed

M-space in X we have ﬂ K,NA,#@ and hence ﬂ K,=®». Thus

Lemma 1 is completely proved

From Lemma 1 we have the following lemma as an immediate
consequence,

Lemma 2. Let {A,, A, ---, A,} be a finite closed covering of
a Hausdorff space X. If each A; is a normal M-space, then X is
a normal M-space.

Lemma 3. Let {A,} be a locally finite closed covering of a
Hausdorff space X and suppose that the order of {A,} does not
exceed n. If each A, 1s a mormal M-space then X is a mormal
M-space.

Proof. From the assumption it is seen that X is collectionwise
normal and countably paracompact (cf. K. Morita [5]). By a theorem
of M. Katétov [3] and the normality of X there exists a locally
finite closed covering {F,} of X such that each F, is a G,-subset
of X, A,CF, for each a and {F,} is similar to {4,}. Let {a, ---, a,}
be a set of n distinct indices. Then we have F, N --- NF, CA,
U -+ UA,, since the order of {A,} does not exceed n. By Lemma 2
A, U -+ UA,, is a normal M-space, therefore, F, N --- NF, is a
normal M-space which is a closed G,-subset of X. For any set
{a, - -+, @,} of r distinct indices we denote

Aay, «+-,a)={a|F.N(F, N -+ NF,)#0,a#a(1=1,2, -+, )
We can easily prove the following relation:
(x%) Fo N +e- ﬂFan_chJ{FaﬂFalﬂ ﬂFa”_l

U (Aa1 U eer Ud,, ).
Since {F.NF, N - nFan LlaeeXa, -+, @, )} is a locally finite
family of closed Ga-subsets of X, by Theorem 1 U{F.,NF, N ---
NF,.,  |aea, - -+, a, )} is a normal M-space. Hence the right
side of (xx) is a normal M-space. Therefore F, N --- NF,  is a
normal M-space and closed G,-subset of X. We can prove succes-
sively that for r distinct indices «,, -+, a,F, N -+ NF, is a
closed G,-subset and a normal M-space, and F, N --- NF, C
U{FanFalm et nFa,_llae‘Q(au "'7ar~1)}U(Aa1U e UAa,,_l)'
Finally, we obtain that each F, is a closed G;-subset of X and a

| ac ‘Q(aly °e an—l)}
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normal M-space. From Theorem 1 it follows now that X is a normal
M-space. The proof of Lemma 3 is thus completed.
3. Proof of Theorem 2. Let us put
G,={x|x is contained in at most » members of {A4,}}
for every positive integer .

Then {G,} is a countable open covering of X. Since X is normal
and countably paracompact, there exists a locally finite closed
covering {B,} of X such that each B, is a G,-subset of X and {B,}
refines {G,}. As {B,NA,|a} is a locally finite closed conering of B,
such that the order of {B,N A,|a} is finite, by Lemma 3 B, is a
closed Gy-subset of X and a normal M-space. Therefore, from
Theorem 1 X is a normal M-space. Thus we see that Theorem 2
holds.
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