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1. Introduction. Prof. K. Morita [4 has introduced the
notion of M-spaces. He calls a topological space X an M-space if
there exists a normal sequence {1I i-1, 2, ...} of open coverings
of X satisfying the condition (.) below:

(If a family consisting of a countable number of subsets

Jof X has the finite intersection property and contains as a
(*)

member a subset of S(x0, 1I) for every i and for some fixed
point x0 of X, then {/ K } =/= .

Recently, T. Kand5 2J has proved the following theorem.
Theorem 1. Let {A.} be, a locally finite covering of a Hausdorff

space X and let each A be a closed G-subset of X. If each A is
a normal M-space with respect to its relative topology, then the
whole space X is also a normal M-space.

In this connection he raised a problem whether Theorem i is
valid without the G-condition for A [2, p. 1053.

The purpose of this note is to give an affirmative answer to
this problem; namely, we shall prove the following theorem.

Theorem 2. Le {A} be a locally finite closed covering of a

Hausdorff space X. If each A is a normal M-space with respect
to its relative topology, then the whole space X is also a normal
M-space.

Most terminologies and notations used in this note are the same
as those of J. W. Tukey 7.

We are indebted to Prof. K. Morita for valuable advices and
encouragements throughout this study.

2. Lemmas. Lemma 1. Let {Ai i-1, 2} be a binary closed
covering of a Hausdorff space X. If each Ai is a normal M-space,
then X is a normal M-space.

Proof. According to a result of A. 0kuyama [6 each A is
collectionwise normal and countably paracompact, and hence by
K. Morita 5_ the whole space X is also collectionwise normal and
countably paracompact.

Suppose that (A) (A.)- .) Then we have (A) (A)
=X.) Since X is normal there exist two closed G-subsets F and

1) 3(A) means the boundary of a set A.
2) 3(A) means the interior of a set A.
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F such that F@F-X and Fc(A)cA (i-1,2). Hence by
Theorem 1 X is a normal M-space. We may assume, therefore,
that (A) (A.)#= .

Now, by assumption each A is an M-space, and hence there
exists a normal sequeuce {) n-1, 2,...} of open coverings of the
subspace A satisfying the condition (.) with respect to the subspace
A. Moreover, we can assume that each covering ) is locally
finite in A by [2, Lemma 1.

Let us put
H U (A) (A) U e )}A U e (A) (A) U e

for every positive integer n. Then is a locally finite open
covering of (A)(A); for the sake of simplicity we shall denote
the members of by U, a e 9, that is, -{Ua e 9}.

(I). By a theorem of C. H. Dowker [1 there exists a locally
finite open family -{V, ]a e 9} of X such that U,((A) (A))
V, for any ae . Moreover, we can assume V,A U() for

some U () e H[) (i- 1, 2; a e 9). Since (A) (A) is contained in
an open set ,) there exists an open set G such that (A)(A)
GG. Let us put [)-{U(A)(X-G)Ue )}(i-1,2)
then -)) is a locally finite open covering of X.

(II). Since H is a locally finite open covering of (A)(A),
by C. H. Dowker 1 there exists a locally finite open fiamily- V e 9} of X such that U (A) (A) V for every
aeg. Moreover we can assume that VNAU() for some
U () e H)(i- 1, 2; a e 9) and VS((A) (A), ) N G for every
a eg. Since (A)(A)is contained in an open set :, there
exists an open set G such that (A) N (A) GG$. Let
us put- U (A) (X-G)] U e )}(i 1, 2), then ) ) U
is a locally finite open covering of X. There exists a locally finite
open covering such that is a star-refinement of and

(III). Now, by the same procedure as in case (II)we can easily
construct by induction with respect to n(n>2) a locally finite open
family -{V. ]a e 9} of X, an open set G, a locally finite open
family (:) of X(i-1, 2) and a locally finite open covering of
X which satisfy the following conditions.

()
(2)
(8)
(4)
(5)

3) * means the sum of elements of a family
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(6) 3)U U is a locally finite open covering of X.
(7) is a star-refinement of

_
.and 3 U3 U3.

(IV). We shall prove that the normal sequence {} satisfies
the M-space condition (.). To prove this, let -{Kln-1, 2, ...}
be any family consisting of a countable number of subsets of X
having the finite intersection property and suppose that contains
as its member a subset K of S(x0, ) for every n and for some
fixed point x0 of X. We have to show {KIKe}=. Without
loss of generality we may assume that for every positive integer
n KK+. We distinguish the following three cases.

Xo (3 S((A) (A.), ).

(ii) Xo e S((A) (A), ), x0 e A and {K A K e } has

the finite intersection property for some i.

(iii) Xo e f S((A) (A), ), x0 e A and {K AIK, e } has

the finite intersection property for some i and 3" with
Case (i). There exists a positive integer no such that

Xo S(5(A) (A), 0)" By (3) *0+ is contained in S((A) (A),
o). Hence Xo is not contained in 30+. On the other hand for
every n>n0+l there exists an element W of

_
such that

KcS(xo, )c W. This set W is contained in an element u_() o
* (i varies with n). Namely,_- for some i(i-1 or 2) since x0

_
() for i-1 or 2 Without loss of generality wewe have gc
_

may assume that there are infinitely many n>n0+l such that
K,cUE. Hence we have KcS(xo, lI’) for infinitely many n
with n>no+l. From the assumption that A is a closed M-space

in X it follows that K-(R).

Case (ii). Without loss of generality we assume that i-1. By
conditions (7) and (8) we have

S(xo, +.)cS(5(A) 5(A), +)cS((A) (A), +)cG.
Hence by (5) we obtain S(xo, +.) (3)* U (,)*)- and so, x0 is
not contained in 3)*U3)*. Thus, we have
c S(x0, 3)U3)@3)-S(x0, 3). Consequently from (2) it follows
that K+ g Ac S(xo, 1I)). Since A is a closed M-space and {K A}
has the finite intersection property, we have f3 {Kf3A}:/::).
Therefore, o course, K :/: .

Case (iii). Without loss o generality we assume that i-1, j-2.
Let us put S(xo, !) g (A) (A.)-M for every positive integer
n; then {Mln-1, 2, ...} has the finite intersection property and
satisfies MM+ for every n. Since {M} satisfies the assumption
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of (.) in the M-space A, we have R M-f M=/=. Let ’ be a
=I i

point of M. Then we shall show that S(x’,
There exists an element W of such that S(0, +)W. By
the assumption we have W (A) (A). Hence there exists
V e such that W V. From (2) it follows that VAU
for some Ue. Therefore, we have UV AS(0, +)
A ’. Consequently, S(x’,) K+ A. Since A is a closed

M-space in Xwe have KA and hence K-. Thus
=I i

Lemma 1 is completely proved.
From Lemma i we have the following lemma as an immediate

consequence.
Lemma 2. Le$ {A, A,..., A} be a finite closed coveving of

a Hausdorff space X. If each A is a normal M-space, $hen X is
a normal M-space.

Lemma . Le$ {A} be a locally finite closed covering of a

Hausdorff space X and suppose $ha$ he order of {A} does no$

exceed n. If each A is a normal M-space $hen X is a novmal
M-space.

Proof. From the assumption it is seen that X is collectionwise
normal and countably paracompact (cf. K. Morita 5). By a theorem
of M. Kattov 3 and the normality of X there exists a locally
finite closed covering {F} of X such that each F is a G-subset
of X, AF for each and {F} is similar to {A}. Let {, ..., }
be a set of n distinct indices. Then we have F FA

UA, since the order of {A} does not exceed n. By Lemma 2

AU A is a normal M-space, therefore, F F is a
normal M-space which is a closed G-subset of X. For any set
{, ..., } of r dstinct ndces we denote
(, ...,)-{F(F F),(i-1,2, ...,)}.

We can easily prove the following relation:
(**) F,n nF._,cU{FnF,n nF_,le(,, _,)}

U(A.,U UA_).
Since {F n Fn nF_ ..., s a locally finite
family of closed G-subsets of X, by Theorem 1 U{FF
F_e 9(, ..., _)} is a normal M-space. Hence the right
side of (**) is a normal M-space. Therefore F F_ is a
normal M-space and closed G-subset of X. We can prove succes-
sively that for r distinct indices , ...,F F s a
closed G-subset and a normal M-space, and F,
{F F F_] e 9(, ..., _)} (A

Finally, we obtain that each F is a closed G-subset of X and a
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normal M-space. From Theorem 1 it follows now that X is a normal
M-space. The proof of Lemma 3 is thus completed.

3. Proof of Theorem 2. Let us put
G,={xlx is contained in at most n members of {A}}

for every positive integer n.
Then {G,} is a countable open covering of X. Since X is normal
and countably paracompact, there exists a locally finite closed
covering {B} of X such that each B is a G-subset of X and {B}
refines {G}. As {BA c} is a locally finite closed conering of B
such that the order of {B,A. a} is finite, by Lemma 3 B, is a
closed G-subset of X and a normal M-space. Therefore, from
Theorem 1 X is a normal M-space. Thus we see that Theorem 2
holds.
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