136. On a Theorem for M-Spaces

By Jingoro Suzuki

Department of Mathematics, Nara University of Education (Comm. by Kinjirô Kunugi, M.J.A., Sept. 12, 1967)

1. Introduction. Prof. K. Morita [4] has introduced the notion of M-spaces. He calls a topological space X an M-space if there exists a normal sequence $\{\mathfrak{U}_i | i=1,2,\cdots\}$ of open coverings of X satisfying the condition (*) below:

(*) $\begin{cases} \text{If a family } \Re \text{ consisting of a countable number of subsets} \\ \text{of } X \text{ has the finite intersection property and contains as a} \\ \text{member a subset of } S(x_0, \mathfrak{U}_i) \text{ for every } i \text{ and for some fixed} \\ \text{point } x_0 \text{ of } X, \text{ then } \cap \{\overline{K} \mid K \in \Re\} \neq \varnothing. \end{cases}$

Recently, T. Kandô [2] has proved the following theorem.

Theorem 1. Let $\{A_{\alpha}\}$ be a locally finite covering of a Hausdorff space X and let each A_{α} be a closed G_{i} -subset of X. If each A_{α} is a normal M-space with respect to its relative topology, then the whole space X is also a normal M-space.

In this connection he raised a problem whether Theorem 1 is valid without the G_{δ} -condition for A_{α} [2, p. 1053].

The purpose of this note is to give an affirmative answer to this problem; namely, we shall prove the following theorem.

Theorem 2. Let $\{A_{\alpha}\}$ be a locally finite closed covering of a Hausdorff space X. If each A_{α} is a normal M-space with respect to its relative topology, then the whole space X is also a normal M-space.

Most terminologies and notations used in this note are the same as those of J. W. Tukey $\lceil 7 \rceil$.

We are indebted to Prof. K. Morita for valuable advices and encouragements throughout this study.

2. Lemma 1. Let $\{A_i | i=1, 2\}$ be a binary closed covering of a Hausdorff space X. If each A_i is a normal M-space, then X is a normal M-space.

Proof. According to a result of A. Okuyama [6] each A_i is collectionwise normal and countably paracompact, and hence by K. Morita [5] the whole space X is also collectionwise normal and countably paracompact.

Suppose that $\mathfrak{B}(A_1) \cap \mathfrak{B}(A_2) = \emptyset$. Then we have $\mathfrak{F}(A_1) \cup \mathfrak{F}(A_2) = X$. Since X is normal there exist two closed G_{δ} -subsets F_1 and

¹⁾ $\mathfrak{B}(A)$ means the boundary of a set A.

²⁾ $\Im(A)$ means the interior of a set A.

 F_2 such that $F_1 \cup F_2 = X$ and $F_i \subset \mathfrak{J}(A_i) \subset A_i$ (i=1,2). Hence by Theorem 1 X is a normal M-space. We may assume, therefore, that $\mathfrak{B}(A_1) \cap \mathfrak{B}(A_2) \neq \emptyset$.

Now, by assumption each A_i is an M-space, and hence there exists a normal sequeuce $\{\mathfrak{U}_n^{(i)} \mid n=1, 2, \cdots\}$ of open coverings of the subspace A_i satisfying the condition (*) with respect to the subspace A_i . Moreover, we can assume that each covering $\mathfrak{U}_n^{(i)}$ is locally finite in A_i by $\lceil 2 \rceil$. Lemma $1 \rceil$.

Let us put

 $\mathfrak{U}_n = \{U \cap \mathfrak{B}(A_1) \cap \mathfrak{B}(A_2) \mid U \in \mathfrak{U}_n^{(1)}\} \wedge \{U \in \mathfrak{B}(A_1) \cap \mathfrak{B}(A_1) \mid U \in \mathfrak{U}_n^{(2)}\}$ for every positive integer n. Then \mathfrak{U}_n is a locally finite open covering of $\mathfrak{B}(A_1) \cap \mathfrak{B}(A_2)$; for the sake of simplicity we shall denote the members of \mathfrak{U}_n by $U_{n\alpha}$, $\alpha \in \Omega_n$, that is, $\mathfrak{U}_n = \{U_{n\alpha} \mid \alpha \in \Omega_n\}$.

- (I). By a theorem of C. H. Dowker [1] there exists a locally finite open family $\mathfrak{B}_1 = \{V_{1\alpha} \mid \alpha \in \Omega_1\}$ of X such that $U_{1\alpha} \supset (\mathfrak{B}(A_1) \cap \mathfrak{B}(A_2)) \cap V_{1\alpha}$ for any $\alpha \in \Omega_1$. Moreover, we can assume $V_{1\alpha} \cap A_i \subset U^{(i)}$ for some $U^{(i)} \in \mathfrak{U}_1^{(i)}$ $(i=1,2;\alpha \in \Omega_1)$. Since $\mathfrak{B}(A_1) \cap \mathfrak{B}(A_2)$ is contained in an open set \mathfrak{B}_1^* , \mathfrak{B}_1^* there exists an open set G_1 such that $\mathfrak{B}(A_1) \cap \mathfrak{B}(A_2) \subset G_1 \subset \overline{G}_1 \subset \mathfrak{B}_1^*$. Let us put $\mathfrak{B}_1^{(i)} = \{U \cap \mathfrak{F}(A_i) \cap (X \overline{G}_1) \mid U \in \mathfrak{U}_1^{(i)}\}(i=1,2)$ then $\mathfrak{B}_1 = \mathfrak{B}_1^{(1)} \cup \mathfrak{B}_1^{(2)} \cup \mathfrak{B}_1$ is a locally finite open covering of X.
- (II). Since \mathfrak{U}_2 is a locally finite open covering of $\mathfrak{B}(A_1) \cap \mathfrak{B}(A_2)$, by C. H. Dowker [1] there exists a locally finite open fiamily $\mathfrak{V}_2 = \{V_{2\alpha} \mid \alpha \in \Omega_2\}$ of X such that $U_{2\alpha} \supset \mathfrak{B}(A_1) \cap \mathfrak{B}(A_2) \cap V_{2\alpha}$ for every $\alpha \in \Omega_2$. Moreover we can assume that $V_{2\alpha} \cap A_i \subset U^{(i)}$ for some $U^{(i)} \in \mathfrak{U}_2^{(i)} (i=1,2;\alpha \in \Omega_2)$ and $V_{2\alpha} \subset S(\mathfrak{B}(A_1) \cap \mathfrak{B}(A_2),\mathfrak{W}_1) \cap G_1$ for every $\alpha \in \Omega_2$. Since $\mathfrak{B}(A_1) \cap \mathfrak{B}(A_2)$ is contained in an open set \mathfrak{B}_2^* , there exists an open set G_2 such that $\mathfrak{B}(A_1) \cap \mathfrak{B}(A_2) \subset G_2 \subset \overline{G}_2 \subset \mathfrak{B}_2^*$. Let us put $\mathfrak{B}_2^{(i)} = \{U \cap \mathfrak{F}(A_i) \cap (X \overline{G}_2) \mid U \in \mathfrak{U}_2^{(i)}\} (i=1,2)$, then $\mathfrak{B}_2^{(1)} \cup \mathfrak{B}_2^{(2)} \cup \mathfrak{B}_2$ is a locally finite open covering of X. There exists a locally finite open covering \mathfrak{W}_2 such that \mathfrak{W}_2 is a star-refinement of \mathfrak{W}_1 and $\mathfrak{B}_2^{(1)} \cup \mathfrak{B}_2^{(2)} \cup \mathfrak{B}_2$.
- (III). Now, by the same procedure as in case (II) we can easily construct by induction with respect to n(n>2) a locally finite open family $\mathfrak{B}_n = \{V_{n\alpha} \mid \alpha \in \Omega_n\}$ of X, an open set G_n , a locally finite open family $\mathfrak{B}_n^{(i)}$ of X(i=1,2) and a locally finite open covering \mathfrak{B}_n of X which satisfy the following conditions.
 - $(1) \quad U_{n\alpha} \supset (\mathfrak{B}(A_1) \cap \mathfrak{B}(A_2)) \cap V_{n\alpha}, \ (\alpha \in \Omega_n).$
 - $(2) \quad V_{n\alpha} \cap A_i \subset U^{(i)} \text{ for some } U^{(i)} \in \mathfrak{U}_n^{(i)}, (i=1, 2; \alpha \in \Omega_n).$
 - $(3) V_{n\alpha} \subset S(\mathfrak{B}(A_1) \cap \mathfrak{B}(A_2), \mathfrak{W}_{n-1}) \cap G_{n-1}, (\alpha \in \Omega_n).$
 - $(4) \quad \mathfrak{B}(A_{\scriptscriptstyle 1}) \cap \mathfrak{B}(A_{\scriptscriptstyle 2}) \subset G_n \subset \bar{G}_n \subset \mathfrak{B}_n^*.$
 - $(5) \quad \mathfrak{B}_n^{(i)} = \{U \cap \mathfrak{F}(A_i) \cap (X \overline{G}_n) \mid U \in \mathfrak{U}_n^{(i)}\}, \ (i = 1, 2).$

^{3) %*} means the sum of elements of a family %.

- (6) $\mathfrak{B}_n^{(1)} \cup \mathfrak{B}_n^{(2)} \cup \mathfrak{B}_n$ is a locally finite open covering of X.
- (7) \mathfrak{B}_n is a star-refinement of \mathfrak{B}_{n-1} and $\mathfrak{B}_n^{\scriptscriptstyle (1)} \cup \mathfrak{B}_n^{\scriptscriptstyle (2)} \cup \mathfrak{B}_n$.
- (IV). We shall prove that the normal sequence $\{\mathfrak{W}_n\}$ satisfies the M-space condition (*). To prove this, let $\Re = \{K_n \mid n=1, 2, \cdots\}$ be any family consisting of a countable number of subsets of X having the finite intersection property and suppose that \Re contains as its member a subset K_{k_n} of $S(x_0, \mathfrak{W}_n)$ for every n and for some fixed point x_0 of X. We have to show $\bigcap \{\overline{K} \mid K \in \Re\} \neq \emptyset$. Without loss of generality we may assume that for every positive integer $n K_n \supset K_{n+1}$. We distinguish the following three cases.
- $\begin{array}{ll} (\ {\rm i}\) & x_0 \not\in \bigcap\limits_{n=1}^{\infty} S(\mathfrak{B}(A_1) \cap \mathfrak{B}(A_2), \ \mathfrak{W}_n). \\ \\ (\ {\rm ii}\) & x_0 \in \bigcap\limits_{n=1}^{\infty} S(\mathfrak{B}(A_1) \cap \mathfrak{B}(A_2), \ \mathfrak{W}_n), \ x_0 \in A_i \ {\rm and} \ \{K_n \cap A_i \mid K_n \in \Re\} \ {\rm has} \end{array}$ the finite intersection property for some i.
- (iii) $x_0 \in \bigcap\limits_{n=1}^{\infty} S(\mathfrak{B}(A_1) \cap \mathfrak{B}(A_2), \, \mathfrak{W}_n), \, x_0 \in A_i \, \text{ and } \{K_n \cap A_j \mid K_n \in \mathfrak{R}\} \, \text{ has the finite intersection property for some } i \, \text{ and } j \, \text{ with } i \neq j.$
- There exists a positive integer n_0 such that Case (i). $x_0 \notin S(\mathfrak{B}(A_1) \cap \mathfrak{B}(A_2), \mathfrak{B}_{n_0}).$ By (3) $\mathfrak{B}_{n_0+1}^*$ is contained in $S(\mathfrak{B}(A_1) \cap \mathfrak{B}(A_2),$ \mathfrak{W}_{n_0}). Hence x_0 is not contained in $\mathfrak{V}_{n_0+1}^*$. On the other hand, for every $n > n_0 + 1$ there exists an element W of \mathfrak{W}_{n-1} such that $K_{k_n} \subset S(x_0, \mathfrak{W}_n) \subset W$. This set W is contained in an element $U_{n-1}^{(i)}$ of $\mathfrak{B}_{n-1}^{(i)}$ for some i(i=1 or 2) since $x_0 \notin \mathfrak{B}_{n-1}^*$ (i varies with n). Namely, we have $K_{k_n} \subset U_{n-1}^{(i)}$ for i=1 or 2. Without loss of generality we may assume that there are infinitely many $n>n_0+1$ such that $K_{k_n} \subset U_{n-1}^{(1)}$. Hence we have $K_{k_n} \subset S(x_0, \mathfrak{U}_n^{(1)})$ for infinitely many nwith $n>n_0+1$. From the assumption that A_1 is a closed M-space in X it follows that $\bigcap\limits_{n=1}^{\infty} \bar{K}_n = \emptyset$.
- Case (ii). Without loss of generality we assume that i=1. By conditions (7) and (8) we have
- $S(x_0, \mathfrak{W}_{n+2}) \subset S(\mathfrak{B}(A_1) \cap \mathfrak{B}(A_2), \mathfrak{W}_{n+1}) \subset S(\mathfrak{B}(A_1) \cap \mathfrak{B}(A_2), \mathfrak{V}_{n+1}) \subset G_n$. Hence by (5) we obtain $S(x_0, \mathfrak{W}_{n+2}) \cap (\mathfrak{V}_n^{(1)*} \cup \mathfrak{V}_n^{(2)*}) = \emptyset$ and so, x_0 is not contained in $\mathfrak{B}_n^{(1)*} \cup \mathfrak{B}_n^{(2)*}$. Thus, we have $K_{k_{n+2}} \subset S(x_0, \mathfrak{B}_{n+2})$ $\subset S(x_0, \mathfrak{B}_n^{(1)} \cup \mathfrak{B}_n^{(2)} \cup \mathfrak{B}_n) = S(x_0, \mathfrak{B}_n)$. Consequently from (2) it follows that $K_{k_{n+2}} \cap A_i \subset S(x_0, \mathfrak{U}_n^{(1)})$. Since A_i is a closed M-space and $\{K_n \cap A_i\}$ has the finite intersection property, we have $\bigcap_{n=1}^{\infty} {\{\overline{K_n \cap A_1}\}} \neq \emptyset$. Therefore, of course, $\bigcap_{n=1}^{\infty} \bar{K}_n \neq \emptyset$.
- Case (iii). Without loss of generality we assume that i=1, j=2. Let us put $S(x_0, \mathfrak{B}_n) \cap \mathfrak{B}(A_1) \cap \mathfrak{B}(A_2) = M_n$ for every positive integer n; then $\{M_n \mid n=1, 2, \cdots\}$ has the finite intersection property and satisfies $M_n \supset \overline{M}_{n+1}$ for every n. Since $\{M_n\}$ satisfies the assumption

of (*) in the M-space A_1 , we have $\bigcap_{n=1}^{\infty} \overline{M}_n = \bigcap_{n=1}^{\infty} M_n \neq \varnothing$. Let x' be a point of $\bigcap_{n=1}^{\infty} M_n$. Then we shall show that $S(x', \mathfrak{U}_n^{(2)}) \supset A_2 \cap K_{k_{n+1}}$. There exists an element W of \mathfrak{W}_n such that $S(x_0, \mathfrak{W}_{n+1}) \subset W$. By the assumption we have $W \cap \mathfrak{B}(A_1) \cap \mathfrak{B}(A_2) \neq \varnothing$. Hence there exists $V_{n\alpha} \in \mathfrak{V}_n$ such that $W \subset V_{n\alpha}$. From (2) it follows that $V_{n\alpha} \cap A_2 \subset U_n^{(2)}$ for some $U_n^{(2)} \in \mathfrak{U}_n^{(2)}$. Therefore, we have $U_n^{(2)} \supset V_{n\alpha} \cap A_2 \supset S(x_0, \mathfrak{W}_{n+1}) \cap A_2 \ni x'$. Consequently, $S(x', \mathfrak{U}_n^{(2)}) \supset K_{k_{n+1}} \cap A_2$. Since A_2 is a closed M-space in X we have $\bigcap_{n=1}^{\infty} \overline{K_n \cap A_2} \neq \varnothing$ and hence $\bigcap_{n=1}^{\infty} \overline{K}_n = \varnothing$. Thus Lemma 1 is completely proved.

From Lemma 1 we have the following lemma as an immediate consequence.

Lemma 2. Let $\{A_1, A_2, \dots, A_n\}$ be a finite closed covering of a Hausdorff space X. If each A_i is a normal M-space, then X is a normal M-space.

Lemma 3. Let $\{A_{\alpha}\}$ be a locally finite closed covering of a Hausdorff space X and suppose that the order of $\{A_{\alpha}\}$ does not exceed n. If each A_{α} is a normal M-space then X is a normal M-space.

Proof. From the assumption it is seen that X is collectionwise normal and countably paracompact (cf. K. Morita [5]). By a theorem of M. Katětov [3] and the normality of X there exists a locally finite closed covering $\{F_{\alpha}\}$ of X such that each F_{α} is a G_{δ} -subset of X, $A_{\alpha} \subset F_{\alpha}$ for each α and $\{F_{\alpha}\}$ is similar to $\{A_{\alpha}\}$. Let $\{\alpha_{1}, \dots, \alpha_{n}\}$ be a set of n distinct indices. Then we have $F_{\alpha_{1}} \cap \dots \cap F_{\alpha_{n}} \subset A_{\alpha_{1}} \cup \dots \cup A_{\alpha_{n}}$, since the order of $\{A_{\alpha}\}$ does not exceed n. By Lemma 2 $A_{\alpha_{1}} \cup \dots \cup A_{\alpha_{n}}$ is a normal M-space, therefore, $F_{\alpha_{1}} \cap \dots \cap F_{\alpha_{n}}$ is a normal M-space which is a closed G_{δ} -subset of X. For any set $\{\alpha_{1}, \dots, \alpha_{r}\}$ of r distinct indices we denote

 $\Omega(\alpha_1, \dots, \alpha_r) = \{ \alpha \mid F_{\alpha} \cap (F_{\alpha_1} \cap \dots \cap F_{\alpha_r}) \neq \emptyset, \alpha \neq \alpha_i (i = 1, 2, \dots, r) \}.$ We can easily prove the following relation:

$$(**) \quad F_{\alpha_1} \cap \cdots \cap F_{\alpha_{n-1}} \subset \cup \{F_{\alpha} \cap F_{\alpha_1} \cap \cdots \cap F_{\alpha_{n-1}} | \alpha \in \Omega(\alpha_1, \cdots \alpha_{n-1})\} \\ \cup (A_{\alpha_1} \cup \cdots \cup A_{\alpha_{n-1}}).$$

Since $\{F_{\alpha} \cap F_{\alpha_1} \cap \cdots \cap F_{\alpha_{n-1}} | \alpha \in \Omega(\alpha_1, \cdots, \alpha_{n-1})\}$ is a locally finite family of closed G_{δ} -subsets of X, by Theorem $1 \cup \{F_{\alpha} \cap F_{\alpha_1} \cap \cdots \cap F_{\alpha_{n-1}} | \alpha \in \Omega(\alpha_1, \cdots, \alpha_{n-1})\}$ is a normal M-space. Hence the right side of (**) is a normal M-space. Therefore $F_{\alpha_1} \cap \cdots \cap F_{\alpha_{n-1}}$ is a normal M-space and closed G_{δ} -subset of X. We can prove successively that for r distinct indices $\alpha_1, \cdots, \alpha_r F_{\alpha_1} \cap \cdots \cap F_{\alpha_r}$ is a closed G_{δ} -subset and a normal M-space, and $F_{\alpha_1} \cap \cdots \cap F_{\alpha_{r-1}} \subset \cup \{F_{\alpha} \cap F_{\alpha_1} \cap \cdots \cap F_{\alpha_{r-1}} | \alpha \in \Omega(\alpha_1, \cdots, \alpha_{r-1})\} \cup (A_{\alpha_1} \cup \cdots \cup A_{\alpha_{r-1}})$. Finally, we obtain that each F_{α} is a closed G_{δ} -subset of X and a

normal M-space. From Theorem 1 it follows now that X is a normal M-space. The proof of Lemma 3 is thus completed.

3. Proof of Theorem 2. Let us put

 $G_n = \{x \mid x \text{ is contained in at most } n \text{ members of } \{A_{\alpha}\}\}\$ for every positive integer n.

Then $\{G_n\}$ is a countable open covering of X. Since X is normal and countably paracompact, there exists a locally finite closed covering $\{B_n\}$ of X such that each B_n is a G_δ -subset of X and $\{B_n\}$ refines $\{G_n\}$. As $\{B_n \cap A_\alpha \mid \alpha\}$ is a locally finite closed conering of B_n such that the order of $\{B_n \cap A_\alpha \mid \alpha\}$ is finite, by Lemma 3 B_n is a closed G_δ -subset of X and a normal M-space. Therefore, from Theorem 1 X is a normal M-space. Thus we see that Theorem 2 holds.

References

- [1] C. H. Dowker: On a theorem of Hanner. Ark. för Mat., 2, 307-313 (1952).
- [2] T. Kandô: On an addition theorem for M-spaces. Proc. Japan Acad., 42, 1050-1055 (1966).
- [3] M. Katětov: Extension of locally finite coverings. Collog. Math., 6, 145-151 (1958).
- [4] K. Morita: Products of normal spaces with metric spaces. Math. Ann., 154, 365-382 (1964).
- [5] —: On spaces having the weak topology with respect to closed coverings. I, II. Proc. Japan Acad., 29, 537-543 (1953); 30, 711-717 (1954).
- [6] A. Okuyama: Some generalizations of metric spaces, their metrization theorems and product spaces (to appear).
- [7] J. W. Tukey: Convergence and Uniformity in Topology. Princeton (1940).