
594 Proc. Japan Acad., 43 (1967) VVol. 43,

132. On the Class of Paranormal Operators

By Takayuki FURUTA
Faculty of Engineering, Ibaraki University

(Comm. by Kinjir5 KuNuGI, ivi.J.A., Sept. 12, 1967)

Introduction. In this paper we discuss a class of non-normal
operators. We call a bounded linear operator T on a Hilbert space
H paranrmal if ]l Tx []>=]1 Tx for every unit vector x in H. In
4 this is named an operator of class (N). It is easily known
that this class includes hyponormal operators and is included in the
class of normaloid operators. *) We show these inclusion relations
are proper and hence paranormal operators constitute a new class
broader than hyponormal operators and narrower than normaloid
operators.

I would like to express here my deep thanks to Professor Zir6
Takeda for liberal use of his time and advice in the preparation of
this paper.

1. Lemma 1. Let T be a paranormal operator, then
1 ) [[ T3x ][[] T2x ]].]] Tx [] for every unit vector x in H.

Proof, For a unit vector x in H, we may assume TxO.

Lemma 2. Let T be a paranormal operator, then

for a positive integer kl and every unit vector x in H.
Proof. For the case k-1

and (P) is clear. Now suppose that (P) is valid for k and we assume
] Tx ]] 0, then

by (1) of Lemma 1 and (P). So (P+) is valid and the proof is
complete by the mathematical induction, q.e.d.

Theorem 1, If T is a paranormal operator, then T is para-
normal for every integer nl.

*) An operater T is said to be hyponormal if T*T>=TT* and normaloid if
[[ T [l=[[ T[[, (see definition 1).
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Proof. It is sufficient to show that if T and T is paranormal,
then T+ is paranormal too. We may assume II Txll=/=:0, then

II T+II- T T

]] Tx ]] Tx ]
by (P+) of Lemma 2. So T+ is paranormal, q.e.d.

Theorem 2. There exists a paranormal operator which is not
hyponormal. That is, the class of hypnormal vperators is properly
included in the class of paranormal perators.

Proof. In [3 Halmos gives a hyponormal operator T such that
T is not hyponormal. By Theorem 1, this T is paranormal. Hence
we get an example of non-hyponormal, paranormal operator.

We discuss Halmos’s example in next section.
In [2 Nakamoto and Horie have given a direct proof of the

next theorem.
Theorem A. A paranormal operator T is compact if and only

if T is compact.
In that paper the author has given an example of non-paranormal

normaloid operator. For convenience sake, we show this example
in next section again. Hence the class of paranormal operators is
properly included in that of normalod operators.

Generalizing the concept of normality, several authors have
introduced classes of non-normal operators. Our new class occupies
the place shown in the following schema and the inclusions are all
proper.

Normal Quasi-normal Subnormal Hyponormal
ParanormalNormaloid

The inclusion relations on the left hand side from hyponormal are
well known in [8.

2. By several examples we indicate the inclusion relation be-
tween Classes of paranormal operators and convexoid operators.

Definition 1. An operator T is called to be normaloid if
T]] sup (Tx, x)].

It is known that T is normaloid if and only if the spectral
radius is equal to ]] T ], or equivalently ] T" ]] ]] T]] for all positive
integers n ([1[3[5[7[8).

Definition 2. An operator T is called to be convexoid if the
closure of numerical range-W(T)={(Tx, x): x]]=l} equals to the
convex hull of the spectrum a(T) of T.

It is known that there exists convexoid operators which are not
normaloid and vice versa ([3).



596 T. FURUTA [Vol. 43,

1) An example of non-convexoid, non-paranormal, normaloid
operator (2).

Let T be an infinite matrix of the form
1 0 0 0
0 M 0 0

T-0 0 M 0 where M=( )
0 0 0 M

Then it is clear that T is normaloid (2), non-paranormal because
1 0 0 0 0
0 0 0 0 0

T= 0 0 0 0 0
0 0 0 0 0
0 0 0 0 0

and ]] T I- I] T -1. However the relation l] Tx ]]>_-II Tx does
not hold for the unit vectors e.-(0, 1, 0, 0, 0, ...), e,-(0, 0, 0, 1, 0,
0, ...) etc. T is non-convexoid. In fact W(T) is the closed convex
set spanned by the disc {z" zl__<l/2} and one point 1, a(T)-{0} U {1},
so the convex hull of a(T)is the closed unit interval 0, 1 and this
unit interval is properly included in W(T).

Remark. Can we generalize Theorem A for normaloid operators ?
This matrix gives a counterexample for this question, because T" is
compact but T is not compact but normaloid.

2) An example of non-paranormal, convexoid, normaloid operator

(3). Put T-(0M 5)where M=( 00)as same as in example 1

and N be a normal operator whose spectrum is the closed unit disc
1. Then a(T)- {0} LJ {D}- D, and W(T)- the convex hull of
(W(M) LJ W(N))-D and It T[[ 1. Hence T is convexoid and nor-
maloid, but it is non-paranormal since Te-e, Te-O for the unit
vector e-(1, 0, 0, ...), ....

3) An example (Halmos) of non-hyponormal, paranormal convexoid
operator (_3).

Let C and Dbe(01 ), ( )respectively and give T, T by

the following infinite matrices respectively,

"C 0 0
0 c
0 0 Ci
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c o o
0 C 0 0

0 D/C 0
0 D

D

(v shows the place of the (0, 0) matrix element).
Clearly D>=C, but this does not imply D>=C. Basing on this fact
we can ascertain that T is hyponormal but T is not so. As well
known every hyponormal operator is convexoid (68). We can
confirm that this non-hyponormal, paranormal operator T is also
convexoid as follows.

D is a positive operator on a two dimensional space E. Its
proper value are (3 /t/5 )/2 and (3-v/ 5 )/2. Put /- (3 /v-)/2,
clearly 1</ and JJ T [I-l/, ]t T Jl-/.

Let -(, .) be the proper vector of D for the proper value
/ and put -(, 0), 0-(0, 0). The matrix T is considered as an

operator acting on the direct sum E where E-E. Take an

arbitrary complex number 2 such that 1[ 21/ and put

where each component is a vector in E,(- oo << oo) respectively
and shows the place of the O-th coordinate. Then clearly is

a vector in (R) N and by a simple calculation we can show that

This guarantees that every complex number such that 11 I/
is in the spectrum a(T) and so the convex hull of the spectrum
coincides with the disc {z" zig/}. On the other hand since TI]-/,
the numerical range of T is contained in this disc. Hence T is
convexoid.

From this example naturally arises a question" Is every para-
normal operator is convexoid? The answer is not certain for the
present author.

Addendum. After we had written this manuscript, we found
the following fundamental inequality. Let T be paranormal then
the following inequality holds for every vector x, not necessarily
for every unit vector x, by the homogeneity of T,
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(*) ]1 T]I>= >-II T’+xll >_
II Txll

-II Tx II- II Tx II- II Tx II II Tx II II x II
From this inequality we get easily known properties of paranormal
operators. For every unit vector x,

, so T is paranormal.
tl Tx !l II x ll

T is normaloid, because we have
tl Tx ’l >_(" Tx ’l )-[I Tx II II x I1

Lemma 2 of this paper follows from

If T is invertible, then the following inequality holds for every
vector x,

II x II II T-x II It T-x II >_

so I1 T=x II >= 1[ T-’x , thus T- is paranormal.
Examining our preprint paper, Istratescu kindly informed us

that he had also theorem 1 independently to us at almost same date
and said that his proof was more computational.
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