152. On Arithmetic Properties of Symmetric Functions of Consecutive Integers

By Bunjiro TSUMURA

Tsumura Research Institute, Tokyo

(Comm. by Zyoiti SUETUNA, M.J.A., Oct. 12, 1967)

1. Main results. Let n be any integer ≥ 2 . We shall write:

(1)
$$f_n(x) = \prod_{i=1}^n (x+i) = \sum_{k=0}^\infty a_k^{(n)} x^k,$$

so that we have:

$$a_0^{(n)} = n$$
, $a_n^{(n)} = 1$, $a_{n+1}^{(n)} = a_{n+2}^{(n)} = \cdots = 0$

and $a_k^{(n)}$ $(1 \le k \le n-1)$ is the elementary symmetric function of degree (n-k) of n consecutive integers $\{1, 2, \dots, n\}$. These numbers have interesting arithmetic properties as shown in the following theorems:

Theorem 1. Let p be any prime and suppose $p-1 \le n$. $a_k^{(n)}$ being defined by (1), put

$$(2) b_{j}^{(n)} = \sum_{\nu=0}^{\infty} a_{j+(p-1)\nu}^{(n)}, \quad j = 0, 1, \dots, p-2.$$

(The right-hand side of (2) is a finite sum, because $a_{n+1}^{(n)} = a_{n+2}^{(n)} = \cdots = 0$.) Then we have

$$(3) b_j^{(n)} \equiv 0 \pmod{p}$$

for
$$j = 0, 1, \dots, p-2$$
.

Remark. When
$$p-1=n$$
, (3) means

$$(4) b_0^{(p-1)} = a_0^{(p-1)} + a_{p-1}^{(p-1)} = (p-1)! + 1 \equiv 0 \pmod{p}$$

and

(5)
$$a_1^{(p-1)} \equiv a_2^{(p-1)} \equiv \cdots \equiv a_{p-2}^{(p-1)} \equiv 0 \pmod{p}.$$

(4) is nothing but the classical theorem of Wilson. Thus Theorem 1 can be regarded as a generalization of Wilson's theorem.

From (5) follows, by the fundamental theorem on symmetric functions that any homogeneous symmetric function of $\{1, 2, \dots, p-1\}$ with integral coefficients of a positive degree $\leq p-2$ is always divisible by p. The following theorem gives a more precise result:

Theorem 2. Let p be any prime ≥ 3 . Then any homogeneous symmetric function of $\{1, 2, \dots, p-1\}$ with integral coefficients of odd degree which is ≥ 3 and $\leq p-2$, is always divisible by p^2 .

Some special cases of this theorem are reported in Dickson [1], pp. 95-96.

The following theorem concerns again $a_k^{(n)}$ for general n (not only for n=p-1).

Theorem 3. $a_k^{(n)}$ being defined by (1) as above, and p being any

prime ≥ 2 , put $\left[\frac{n}{p}\right] = \nu_p^{(n)}$. ([x], for $x \in \mathbf{R}$, denotes the largest integer $\leq x$.) For $\nu_p^{(n)} \geq k$, $a_k^{(n)}$ is divisible by $(\nu_p^{(n)} - k)$ -th power of p.

2. Sketch of proofs. Our Theorem 1 follows from the following Lemma. Let

$$F(x) = \sum_{k=0}^{n} A_k x^k$$

be a polynomial with integral coefficients of degree $\leq n$. Put $A_{n+1} = A_{n+2} = \cdots = 0$ and

$$B_j = \sum_{\nu=0}^{\infty} A_{j+(p-1)\nu}$$

for $j=0, 1, 2, \dots, p-2$, where p is any prime. If (6) $F(1)\equiv F(2)\equiv \dots \equiv F(p-1)\equiv 0 \pmod{p}$, then we have (7) $B_0\equiv B_1\equiv \dots \equiv B_{p-2}\equiv 0 \pmod{p}$.

Proof. Put

$$G(x) = \sum_{j=0}^{p-2} B_j x^j, \quad F(x) - G(x) = H(x).$$

As we have, for $j = 0, 1, \dots, p-2$,

$$i^j \equiv i^{j+(p-1)} \equiv i^{j+2(p-1)} \equiv \cdots \pmod{p}$$

for $i=1, 2, \dots, p-1$, we have

$$H(1) \equiv H(2) \equiv \cdots \equiv H(p-1) \equiv 0 \pmod{p}.$$

From (6) follows now

$$G(1) \equiv G(2) \equiv \cdots \equiv G(p-1) \equiv 0 \pmod{p}.$$

But G(x) of a degree $\leq p-2$. Hence follows (7) by a well-known theorem of algebra. q.e.d.

It is obvious that for $F(x) = f_n(x)$, the condition (6) is satisfied. So we obtain Theorem 1.

To illustrate the proof of Theorem 2, consider the case of degree 3. Put generally:

$$s_k^{(n)} = \sum_{i=1}^n i^k.$$

The values of $s_k^{(n)}$ are obtained by Bernoulli's summation formula, and it is known that $s_k^{(p-1)} \equiv 0$ $(\mod p)$ (8)for $k = 1, 2, 3, 4, \dots$, and $s_3^{(p-1)} \equiv s_5^{(p-1)} \equiv \cdots \equiv 0$ $(\mod p^2)$. (9) Now we have, by a well-known formula of Newton: $s_{3}^{(p-1)} - a_{p-2}^{(p-1)}s_{2}^{(p-1)} + a_{p-3}^{(p-1)}s_{1}^{(p-1)} - 3a_{p-4}^{(p-1)} = 0.$ (10)In virtue of (8), (9), and (5), we obtain from (10) $3a_{p-4}^{(p-1)} \equiv 0$ $(\text{mod } p^2).$ (11)

Now $a_{p-4}^{(p-1)}$ is the elementary symmetric function of $\{1, 2, \dots, p-1\}$ of degree 3. As far as we are considering functions of degree 3

which is $\leq p-2$, we should have $p \geq 5$. So (11) implies $a_{n-4}^{(p-1)} \equiv 0$ (12) $(\mod p^2)$.

Let s be any homogeneous symmetric function of degree 3 of $\{1, 2, \dots, p-1\}$ with integral coefficients. By the fundamental theorem on symmetric functions, s can be written in a form:

$$s = c_1 a_{p-4}^{(p-1)} + c_2 a_{p-2}^{(p-1)} a_{p-3}^{(p-1)} + c_3 (a_{p-2}^{(p-1)})^3$$

where c_1, c_2, c_3 are integers. From (5), (12) follows then $s \equiv 0 \pmod{p^2}$. For higher degrees 5, 7, \dots , p-2, the proof runs analogously.

 $a_{\mathbf{i}}^{(p-1)} \equiv 0 \pmod{p^2}$ (13)for $p \ge 5$.

The assertion of Theorem 3 for k=0 is clear as $a_0^{(n)}=n$ and n is, as is well-known, divisible by $\left(\left[\frac{n}{p}\right] + \left[\frac{n}{p^2}\right] + \cdots\right)$ -th power of p. We shall illustrate here the proof for k=1, through induction based on the obvious recursion formula:

$$a_{k+1}^{(n)} \cdot (n+1) + a_k^{(n)} = a_{k+1}^{(n+1)}$$

which yields for k=0(14)

 $a_1^{(n)} \cdot (n+1) + a_0^{(n)} = a_1^{(n+1)}$. Divide now two cases: (i) $n+1 \not\equiv 0 \pmod{p}$ i.e. $\left[\frac{n+1}{p}\right] = \left[\frac{n}{p}\right]$

and (ii) $n+1 \equiv 0 \pmod{p}$, i.e. $\left[\frac{n+1}{n}\right] = \left[\frac{n}{n}\right] + 1$.

Case (i): $a_1^{(n)}$ is divisible by $\left(\left\lfloor \frac{n}{p} \right\rfloor - 1\right)$ -th power of p by the hypothesis of induction and $a_0^{(n)} = n$ is also divisible by the same power as noted above. Therefore so is also $a_1^{(n+1)}$ by (14).

Case (ii): $a_1^{(n)}(n+1)$ and $a_0^{(n)}$ are both divisible by $\left|\frac{n}{n}\right|$ -th power of p, and so is also $a_1^{(n+1)}$.

3. Some consequences and additional results. We have clearly

$$rac{1}{1} + rac{1}{2} + rac{1}{3} + \cdots + rac{1}{p-1} = rac{a_1^{(p-1)}}{(p-1)!}.$$

So if p is a prime ≥ 5 , we see by Theorems 2 and 3 (particularly by (13)), that this numerator is divisible by p^2 and $\left(\left\lceil \frac{p-1}{2}\right\rceil - 1\right)$ -th power of 2, $\left(\left\lceil \frac{p-1}{2} \right\rceil - 1\right)$ -th power of 3, \cdots . The author discovered and proved this as early as in 1907. $a_1^{(p-1)} \equiv 0 \pmod{p^2}$ was first proved by Wolstenholme according to $\lceil 1 \rceil$, p. 89.

From Theorem 1 follows in particular

 $a_i^{(n)} \equiv 0 \pmod{p}$

B. TSUMURA

[Vol. 43,

if j+(p-1)>n. This occurs when $p>\frac{n+3}{2}$ so that p-2>n-p+1and $p-2\ge j>n-p+1$. E.g. $a_{51}^{(102)}$ is divisible by all 11 primes between 53 and 101 and moreover by 103² by virtue of Theorem 3.

If $n \ge pt-1$, then the assertion (3) in Theorem 1 can be strengthened to

$$b_j^{(n)} \equiv 0 \pmod{p^t}.$$

All of the numbers $a_k^{(p-2)}$, $k = 0, 1, 2, \dots, p-2$ are $\equiv 1 \pmod{p}$. The author observed still many other curious facts about $a_k^{(n)}$, such as the following, but is not in a position to enunciate the precise rules:

(a) The numbers $a_k^{(2p-2)}$, $k=0, 1, 2, \dots, p-2$ are $\equiv 1 \pmod{p}$ $k=p-1, p, p+1, \dots, 2p-3$ are $\equiv -1 \pmod{p}$.

(b) Many of the numbers $a_k^{(pt-1)}$, $k=1, 2, \dots, pt-1$ are $\equiv 0 \pmod{p}$, $0 \pmod{p^2}$, \dots , $0 \pmod{p^{t-1}}$.

If $k=0, p-1, 2(p-1), \dots, t(p-1)$, then $a_k^{(pt-1)} \equiv \pm 1 \pmod{p}$ or $\pm t \pmod{p}$.

The author wishes to express his thanks to Professor S. Iyanaga for his encouragement.

Reference

[1] L. E. Dickson: History of the Theory of Numbers (Chap. III). Washington (1919).