152. On Arithmetic Properties of Symmetric Functions of Consecutive Integers

By Bunjiro Tsumura
Tsumura Research Institute, Tokyo

(Comm. by Zyoiti Suetuna, m.J.A., Oct. 12, 1967)

1. Main results. Let n be any integer $\geqslant 2$. We shall write:

$$
\begin{equation*}
f_{n}(x)=\prod_{i=1}^{n}(x+i)=\sum_{k=0}^{\infty} a_{k}^{(n)} x^{k} \tag{1}
\end{equation*}
$$

so that we have:

$$
a_{0}^{(n)}=n!, \quad a_{n}^{(n)}=1, \quad a_{n+1}^{(n)}=a_{n+2}^{(n)}=\cdots=0
$$

and $a_{k}^{(n)}(1 \leq k \leq n-1)$ is the elementary symmetric function of degree ($n-k$) of n consecutive integers $\{1,2, \cdots, n\}$. These numbers have interesting arithmetic properties as shown in the following theorems:

Theorem 1. Let p be any prime and suppose $p-1 \leq n$. $a_{k}^{(n)}$ being defined by (1), put

$$
\begin{equation*}
b_{j}^{(n)}=\sum_{\nu=0}^{\infty} a_{j+(p-1) \nu}^{(n)}, \quad j=0,1, \cdots, p-2 \tag{2}
\end{equation*}
$$

(The right-hand side of (2) is a finite sum, because $a_{n+1}^{(n)}=a_{n+2}^{(n)}=\cdots=0$.)
Then we have
(3) $\quad b_{j}^{(n)} \equiv 0 \quad(\bmod p)$
for $j=0,1, \cdots, p-2$.
Remark. When $p-1=n$, (3) means

$$
\begin{equation*}
b_{0}^{(p-1)}=a_{0}^{(p-1)}+a_{p-1}^{(p-1)}=(p-1)!+1 \equiv 0 \quad(\bmod p) \tag{4}
\end{equation*}
$$

and

$$
\begin{equation*}
a_{1}^{(p-1)} \equiv a_{2}^{(p-1)} \equiv \cdots \equiv a_{p-2}^{(p-1)} \equiv 0 \quad(\bmod p) . \tag{5}
\end{equation*}
$$

(4) is nothing but the classical theorem of Wilson. Thus Theorem 1 can be regarded as a generalization of Wilson's theorem.

From (5) follows, by the fundamental theorem on symmetric functions that any homogeneous symmetric function of $\{1,2, \cdots, p-1\}$ with integral coefficients of a positive degree $\leq p-2$ is always divisible by p. The following theorem gives a more precise result:

Theorem 2. Let p be any prime $\geqslant 3$. Then any homogeneous symmetric function of $\{1,2, \cdots, p-1\}$ with integral coefficients of odd degree which is $\geqslant 3$ and $\leq p-2$, is always divisible by p^{2}.

Some special cases of this theorem are reported in Dickson [1], pp. 95-96.

The following theorem concerns again $\alpha_{k}^{(n)}$ for general n (not only for $n=p-1$).

Theorem 3. $a_{k}^{(n)}$ being defined by (1) as above, and p being any
prime $\geqslant 2$, put $\left[\frac{n}{p}\right]=\nu_{p}^{(n)}$. ([x], for $x \in \mathbf{R}$, denotes the largest integer $\leq x$.) For $\nu_{p}^{(n)} \geqslant k, a_{k}^{(n)}$ is divisible by $\left(\nu_{p}^{(n)}-k\right)$-th power of p.
2. Sketch of proofs. Our Theorem 1 follows from the following Lemma. Let

$$
F(x)=\sum_{k=0}^{n} A_{k} x^{k}
$$

be a polynomial with integral coefficients of degree $\leq n$. Put A_{n+1} $=A_{n+2}=\cdots=0$ and

$$
B_{j}=\sum_{\nu=0}^{\infty} A_{j+(p-1) \nu}
$$

for $j=0,1,2, \cdots, p-2$, where p is any prime. If
(6) $\quad F(1) \equiv F(2) \equiv \cdots \equiv F(p-1) \equiv 0 \quad(\bmod p)$,
then we have

$$
\begin{equation*}
B_{0} \equiv B_{1} \equiv \cdots \equiv B_{p-2} \equiv 0 \quad(\bmod p) \tag{7}
\end{equation*}
$$

Proof. Put

$$
G(x)=\sum_{j=0}^{p-2} B_{j} x^{j}, \quad F(x)-G(x)=H(x) .
$$

As we have, for $j=0,1, \cdots, p-2$,

$$
i^{j} \equiv i^{j+(p-1)} \equiv i^{j+2(p-1)} \equiv \cdots \quad(\bmod p)
$$

for $i=1,2, \cdots, p-1$, we have

$$
H(1) \equiv H(2) \equiv \cdots \equiv H(p-1) \equiv 0 \quad(\bmod p)
$$

From (6) follows now

$$
G(1) \equiv G(2) \equiv \cdots \equiv G(p-1) \equiv 0 \quad(\bmod p)
$$

But $G(x)$ of a degree $\leq p-2$. Hence follows (7) by a well-known theorem of algebra.
q.e.d.

It is obvious that for $F(x)=f_{n}(x)$, the condition (6) is satisfied. So we obtain Theorem 1.

To illustrate the proof of Theorem 2, consider the case of degree 3. Put generally:

$$
s_{k}^{(n)}=\sum_{i=1}^{n} i^{k} .
$$

The values of $s_{k}^{(n)}$ are obtained by Bernoulli's summation formula, and it is known that
(8)

$$
s_{k}^{(p-1)} \equiv 0 \quad(\bmod p)
$$

for $k=1,2,3,4, \cdots$, and

$$
\begin{equation*}
s_{3}^{(p-1)} \equiv s_{5}^{(p-1)} \equiv \cdots \equiv 0 \quad\left(\bmod p^{2}\right) \tag{9}
\end{equation*}
$$

Now we have, by a well-known formula of Newton:

$$
\begin{equation*}
s_{3}^{(p-1)}-a_{p-2}^{(p-1)} s_{2}^{(p-1)}+a_{p-3}^{(p-1)} s_{1}^{(p-1)}-3 a_{p-4}^{(p-1)}=0 \tag{10}
\end{equation*}
$$

In virtue of (8), (9), and (5), we obtain from (10)

$$
\begin{equation*}
3 a_{p-4}^{(p-1)} \equiv 0 \quad\left(\bmod p^{2}\right) . \tag{11}
\end{equation*}
$$

Now $a_{p-4}^{(p-1)}$ is the elementary symmetric function of $\{1,2, \cdots, p-1\}$ of degree 3. As far as we are considering functions of degree 3
which is $\leq p-2$, we should have $p \geqslant 5$. So (11) implies (12)

$$
a_{p-4}^{(p-1)} \equiv 0 \quad\left(\bmod p^{2}\right) .
$$

Let s be any homogeneous symmetric function of degree 3 of $\{1,2, \cdots, p-1\}$ with integral coefficients. By the fundamental theorem on symmetric functions, s can be written in a form:

$$
s=c_{1} a_{p-4}^{(p-1)}+c_{2} a_{p-2}^{(p-1)} a_{p-3}^{(p-1)}+c_{3}\left(a_{p-2}^{(p-1)}\right)^{3}
$$

where c_{1}, c_{2}, c_{3} are integers. From (5), (12) follows then $s \equiv 0\left(\bmod p^{2}\right)$.
For higher degrees $5,7, \cdots, p-2$, the proof runs analogously. We have in particular:

$$
\begin{equation*}
a_{1}^{(p-1)} \equiv 0 \quad\left(\bmod p^{2}\right) \tag{13}
\end{equation*}
$$

for $p \geqslant 5$.
The assertion of Theorem 3 for $k=0$ is clear as $a_{0}^{(n)}=n!$ and $n!$ is, as is well-known, divisible by $\left(\left[\frac{n}{p}\right]+\left[\frac{n}{p^{2}}\right]+\cdots\right)$-th power of p. We shall illustrate here the proof for $k=1$, through induction based on the obvious recursion formula:

$$
a_{k+1}^{(n)} \cdot(n+1)+a_{k}^{(n)}=a_{k+1}^{(n+1)}
$$

which yields for $k=0$

$$
\begin{equation*}
a_{1}^{(n)} \cdot(n+1)+a_{0}^{(n)}=a_{1}^{(n+1)} . \tag{14}
\end{equation*}
$$

Divide now two cases: (i) $n+1 \not \equiv 0(\bmod p)$ i.e. $\left[\frac{n+1}{p}\right]=\left[\frac{n}{p}\right]$ and (ii) $n+1 \equiv 0(\bmod p)$, i.e. $\left[\frac{n+1}{p}\right]=\left[\frac{n}{p}\right]+1$.

Case (i): $a_{1}^{(n)}$ is divisible by $\left(\left[\frac{n}{p}\right]-1\right)$-th power of p by the hypothesis of induction and $a_{0}^{(n)}=n!$ is also divisible by the same power as noted above. Therefore so is also $a_{1}^{(n+1)}$ by (14).

Case (ii): $a_{1}^{(n)}(n+1)$ and $a_{0}^{(n)}$ are both divisible by $\left[\frac{n}{p}\right]$-th power of p, and so is also $a_{1}^{(n+1)}$.
3. Some consequences and additional results. We have clearly

$$
\frac{1}{1}+\frac{1}{2}+\frac{1}{3}+\cdots+\frac{1}{p-1}=\frac{a_{1}^{(p-1)}}{(p-1)!} .
$$

So if p is a prime $\geqslant 5$, we see by Theorems 2 and 3 (particularly by (13)), that this numerator is divisible by p^{2} and $\left(\left[\frac{p-1}{2}\right]-1\right)$-th power of 2 , $\left(\left[\frac{p-1}{3}\right]-1\right)$-th power of $3, \cdots$. The author discovered and proved this as early as in 1907. $a_{1}^{(p-1)} \equiv 0\left(\bmod p^{2}\right)$ was first proved by Wolstenholme according to [1], p. 89.

From Theorem 1 follows in particular

$$
a_{j}^{(n)} \equiv 0 \quad(\bmod p)
$$

if $j+(p-1)>n$. This occurs when $p>\frac{n+3}{2}$ so that $p-2>n-p+1$ and $p-2 \geqslant j>n-p+1$. E.g. $a_{51}^{(102)}$ is divisible by all 11 primes between 53 and 101 and moreover by 103^{2} by virtue of Theorem 3.

If $n \geqslant p t-1$, then the assertion (3) in Theorem 1 can be strengthened to

$$
b_{j}^{(n)} \equiv 0 \quad\left(\bmod p^{t}\right) .
$$

All of the numbers $\mathrm{a}_{k}^{(p-2)}, k=0,1,2, \cdots, p-2 \operatorname{are} \equiv 1(\bmod p)$. The author observed still many other curious facts about $a_{k}^{(n)}$, such as the following, but is not in a position to enunciate the precise rules:
(a) The numbers $\mathrm{a}_{k}^{(2 p-2)}, k=0,1,2, \cdots, p-2$ are $\equiv 1(\bmod p)$ $k=p-1, p, p+1, \cdots, 2 p-3$ are $\equiv-1(\bmod p)$.
(b) Many of the numbers $a_{k}^{(p t-1)}, k=1,2, \cdots, p t-1$ are $\equiv 0(\bmod p), 0\left(\bmod p^{2}\right), \cdots, 0\left(\bmod p^{t-1}\right)$.
If $k=0, p-1,2(p-1), \cdots, t(p-1)$, then $a_{k}^{(p t-1)} \equiv \pm 1(\bmod p)$ or $\pm t$ $(\bmod p)$.

The author wishes to express his thanks to Professor S. Iyanaga for his encouragement.

Reference

[1] L. E. Dickson: History of the Theory of Numbers (Chap. III). Washington (1919).

