194. On Free Abelian m-Groups. II

By F. M. Sioson
University of Ateneo de Manila, Manila
(Comm. by Kinjirô Kunugi, m.J.A., Nov. 13, 1967)
In the second part of this article, the notion of free abelian m-group will be introduced and their properties are given.

Definition. An m-group (M, []) will be called abelian if and only if $\left[x_{1} x_{2} \cdots x_{m}\right]=\left[x_{\sigma(1)} x_{\sigma(2)} \cdots x_{\sigma(m)}\right]$ for every permutation σ of $1,2, \cdots, m$ and each $x_{1}, x_{2}, \cdots, x_{m} \in M$.

Definition. An abelian m-group F is said to be free on X if and only if for a one-to-one function $i: X \rightarrow F$, an abelian m-group M, every function $g: X \rightarrow M$ has a unique homomorphism extension $h: F \rightarrow M$ that makes the following diagram commutative

that is to say, $h \circ i=g$.
Consider the (restricted) direct sum $\sum_{x \in X} Z_{x}$ of copies $Z_{x}=Z$ of the additive group of the integers Z. Recall that $f \in \sum_{x \in X} Z_{x}$ if and only if $f(x)=0$ for all x except for a finite number x_{1}, \cdots, x_{n} of elements of X. For each $x \in X$, if $|x|$ denotes the member of $\sum_{x \in X} Z_{x}$ such that $|x|(x)=1$ but otherwise is zero, then

$$
f=f\left(x_{1}\right)\left|x_{1}\right|+\cdots+f\left(x_{n}\right)\left|x_{n}\right| .
$$

Set

$$
F=\left\{f \in \sum_{x \in X} Z_{x} \mid \sum_{x \in X} f(x) \equiv 1(\bmod m-1)\right\} .
$$

Under the m-ary operation defined by

$$
\left\lfloor f_{1} f_{2} \cdots f_{m}\right\rfloor=f_{1}+f_{2}+\cdots+f_{m}
$$

where $f_{i}+f_{j}$ is the function such that $\left(f_{i}+f_{j}\right)(x)=f_{i}(x)+f_{j}(x)$, the system (F, []) is obviously an abelian m-group. Note that every integer $f\left(x_{i}\right)$ is a sum of a minimal number of the integers $\langle 0\rangle$ and $\langle-1\rangle$. This minimal sum is unique except for ordering. This means that every element $f=f\left(x_{1}\right)\left|x_{1}\right|+\cdots+f\left(x_{n}\right)\left|x_{n}\right|$ of F possesses a unique factorization (up to ordering or arrangement)

$$
\begin{aligned}
f= & \left|x_{1}\right|^{\left\langle e_{11}\right\rangle}+\left|x_{1}{ }^{\left\langle e_{12}\right\rangle}+\cdots+\right| x_{1}{ }^{\left\langle e_{1 r_{1}}\right\rangle}+\cdots \\
& +\left|x_{n}\right|^{\left\langle e_{n}\right\rangle}+\left|x_{n}\right|^{\left\langle e_{n 2}\right\rangle}+\cdots+\left|x_{n}\right|{ }^{\left|e_{n r_{n}}\right\rangle} \\
= & {\left[\left|x_{1}\right|^{\left\langle e_{11}\right\rangle}\left|x_{1}\right|^{\left|e_{12}\right\rangle} \cdots\left|x_{1}\right|^{\left\langle e_{\left.1 r_{1}\right\rangle}\right\rangle} \cdots\left|x_{n}\right|^{\left\langle e_{n 1}\right\rangle} \cdots\left|x_{n}\right|^{\left\langle e_{n r_{n}}{ }^{\rangle}\right.}\right], }
\end{aligned}
$$

where $e_{i j}=0$ or -1 and $\sum_{i=1}^{n} \sum_{j=1}^{r_{i}}\left\langle e_{i j}\right\rangle \equiv 1(\bmod m-1)$. Observe that
$|x|^{\langle-1\rangle}$ is the element of $\sum_{x \in X} Z_{x}$ such that $|x|^{\langle-1\rangle}(x)=-m+2$ but otherwise is 0 . Note also that it is the unique element such that $\left(|x|,|x|, \cdots,|x|,|x|^{\langle-1\rangle}\right)$ and $\left(|x|^{|-1\rangle},|x|, \cdots,|x|\right)$ are ($m-1$)-adic identies or, in other words, $|x|+|x|+\cdots+|x|+|x|^{\langle-1\rangle}$ is the function which is identically 0 .

Theorem 4. The abelian m-group ($F,[]$) defined above is free on X.

Proof. For an arbitary m-group M and $g: X \rightarrow M$ define $h: F \rightarrow M$ by $h\left(\left[\left|x_{1}\right|^{\left\langle e_{1}\right\rangle}\left|x_{2}\right|^{\left\langle e_{2}\right\rangle} \cdots\left|x_{k}\right|^{\left\langle e_{k}\right\rangle}\right]=\left[g\left(x_{1}\right)^{\left\langle e_{1}\right\rangle} g\left(x_{2}\right)^{\left\langle e_{2}\right\rangle} \cdots g\left(x_{k}\right)^{\left\langle e_{k}\right\rangle}\right]\right.$ where e_{i} $=0$ or $-1, \sum_{i=1}^{l}\left\langle e_{i}\right\rangle \equiv 1(\bmod m-1)$, and $g(x)^{\langle-1\rangle}$ is the unique element of M such that $\left(g(x), g(x), \cdots, g(x), g(x)^{\langle-1\rangle}\right)$ and $\left(g(x)^{\langle-1\rangle}, g(x), \cdots, g(x)\right)$ are ($m-1$)-adic identities of M. It readily follows that h is an m group homomorphism, i.e. $h\left(\left[f_{1} f_{2} \cdots f_{m}\right]\right)=\left[h\left(f_{1}\right) h\left(f_{2}\right) \cdots h\left(f_{m}\right)\right]$ for all $f_{1}, f_{2}, \cdots, f_{m} \in F$. If $i: X \rightarrow F$ is defined naturally by $i(x)=|x|$, then $(h \circ i)(x)=h(i(x))=h(|x|)=g(x)$. Note that if $h \circ i=g=h^{\prime} \circ i$, then $h^{\prime}=h$.

Corollary 5. Every m-group M is the quotient m-group of a free m-group.

Proof. Let $i: M \rightarrow F$ be that $i(x)=|x|$ for all $x \in M$, where F is a free m-group on M, and $1: M \rightarrow M$ be the identity function. Then, by Theorem 4, there exists uniquely a homomorphism $h: F \rightarrow M$ such that $h \circ i=1$. Hence h is onto M and $F / h \circ h^{-1}$ is isomorphic to M.

Corollary 6. If F_{1} is an abelian m-group free on X_{1}, F_{2} is an abelian m-group free on X_{2}, and X_{1} and X_{2} have the same number of elements, then F_{1} and F_{2} are isomorphic.

Proof. In the following diagram

let $e: X_{1} \rightarrow X_{2}$ be one-to-one and onto and $i_{k}: X_{k} \rightarrow F_{k}(k=1,2)$ be one-to-one. Then, by Theorem 4, there exist uniquely homomorphisms $h_{1}: F_{1} \rightarrow F_{2}$ and $h_{2}: F_{2} \rightarrow F_{1}$ such that $h_{1} \circ i_{1}=i_{2} \circ e$ and $h_{2} \circ i_{2}=i_{1} \circ e^{-1}$. Then, $h_{2} \circ h_{1} \circ i_{1}=h_{2} \circ i_{2} \circ e=i_{1} \circ e^{-1} \circ e=i_{1}$ and hence $h_{2} \circ h_{1}=1$. Similarly, $h_{1} \circ h_{2} \circ i_{2}=h_{1} \circ i_{1} \circ e^{-1}=i_{2} \circ e \circ e^{-1}=i_{2}$ and hence $h_{1} \circ h_{2}=1$. Whence h_{1} and h_{2} are homomorphisms that are inverses of each other.

Corollary 7. The free abelian m-group F on X is a coset of
the free abelian (2-group) group $\sum_{x \in X} Z_{x}$ on X under the (normal) subgroup N of all $f \in F$ such that

$$
\sum_{x \in X} f(x) \equiv 0(\bmod m-1)
$$

Proof. Obviously, N is closed under + and - and therefore a subgroup of $\sum_{x \in X} Z_{x}$. Moreover, observe that $F=N+|x|$ for any $x \in X$.

Corollary 8. The free abelian m-group on a singleton $\{x\}$ (i.e. the infinite cyclic m-group $(|x|)$) is isomorphic to the m-group ($Z,[]$) of integers under the operation

$$
\left[n_{1} n_{2} \cdots n_{m}\right]=n_{1}+n_{2}+\cdots+n_{m}+1
$$

for all $n_{1}, n_{2}, \cdots, n_{m} \in Z$.
Proof. By the preceding Corollary 7, the infinite cyclic m-group is a coset of the additive group Z of integers by the (normal) subgroup Z_{m-1} of all multiples of $m-1$. In fact, $(|x|)=1+Z_{m-1}$. The function $h:(|x|) \rightarrow Z$ such that $h(\langle n\rangle)=n$ is clearly one-to-one and onto and also satisfies the relation

$$
\begin{aligned}
& h\left(\left[\left\langle n_{1}\right\rangle\left\langle n_{2}\right\rangle \cdots\left\langle n_{m}\right\rangle\right]\right)=h\left(\left\langle n_{1}+n_{2}+\cdots+n_{m}+1\right\rangle\right) \\
& \quad=n_{1}+n_{2}+\cdots+n_{m}+1=\left[n_{1} n_{2} \cdots n_{m}\right]=\left[h\left(n_{1}\right) h\left(n_{2}\right) \cdots h\left(n_{m}\right)\right]
\end{aligned}
$$

for all $n_{1}, n_{2}, \cdots, n_{m} \in Z$.
Now, consider any two abelian m-groups M and N. Let F be the free abelian m-group on the cartesian product $M \times N$. As we have seen before, an arbitrary element of F may, up to ordering, be uniquely representable in the form

$$
\begin{aligned}
& {\left[\left|\left(x_{1}, y_{1}\right)\right|^{\left\langle e_{1}\right\rangle}\left|\left(x_{2}, y_{2}\right)\right|^{\left\langle e_{2}\right\rangle} \cdots\left|\left(x_{k}, y_{k}\right)\right|^{\left\langle e_{k}\right\rangle}\right]} \\
& \left.\quad=\left|\left(x_{1}, y_{1}\right)\right|{ }^{\left|e_{1}\right\rangle}+\left|\left(x_{2}, y_{2}\right)\right|^{\left\langle e_{2}\right\rangle}+\cdots+\left|\left(x_{k}, y_{k}\right)\right|^{\left\langle e_{k}\right\rangle}\right\rangle
\end{aligned}
$$

where $e_{i}=0$ or -1 and $\sum_{i=1}^{k}\left\langle e_{i}\right\rangle \equiv 1(\bmod m-1)$. Let R be the symmetric relation on F that contains all pairs $\left(\left|\left(x^{\langle n\rangle}, y\right)\right|,\left|\left(x, y^{\langle n\rangle}\right)\right|\right),\left(\left|\left(\left[x_{1} x_{2} \cdots x_{m}\right], y\right)\right|,\left[\left|\left(x_{1}, y\right)\right|\left|\left(x_{2}, y\right)\right| \cdots\left|\left(x_{m}, y\right)\right|\right]\right)$, and

$$
\left(\left|\left(x,\left[y_{1} y_{2} \cdots y_{m}\right]\right)\right|,\left[\left|\left(x, y_{1}\right)\right|\left|\left(x, y_{2}\right)\right| \cdots\left|\left(x, y_{m}\right)\right|\right]\right)
$$

for all $x, x_{1}, \cdots, x_{m} \in M, y, y_{1}, \cdots, y_{m} \in N$, and $n \in Z$. Let θ be the least congruence (relation) on F containing R. Note that $(v, w) \in \theta$ if and only if $v=\left[v_{1} v_{2} \cdots v_{\langle k\rangle}\right], w=\left[w_{1} w_{2} \cdots w_{\langle k\rangle}\right]$, and for each $i=1,2, \cdots,\langle k\rangle$, there exists $u_{i 1}, u_{i 2}, \cdots, u_{i r_{i}} \in F$ such that $v_{i}=u_{i 1}$, $w_{i}=u_{i r_{i}}$ and $\left(u_{i j}, u_{i j+1}\right) \in R$.

By the Post Coset Theorem, M is a coset of an abelian group $A=M \cup M^{2} \cup \cdots \cup M^{m-1}$ and N of $B=N \cup N^{2} \cup \cdots \cup N^{m-1}$. Recall that if F^{*} is the abelian group free on $A \times B$ and θ^{*} is the smallest congruence (relation) on F^{*} containing all ordered pairs

$$
\begin{aligned}
& \left(\left|\left(x_{1}+x_{2}, y\right)\right|,\left|\left(x_{1}, y\right)\right|+\left|\left(x_{2}, y\right)\right|\right) \\
& \quad\left(\left|\left(x, y_{1}+y_{2}\right)\right|,\left|\left(x, y_{1}\right)\right|+\left|\left(x, y_{2}\right)\right|\right),(|(-x, y)|,|(x,-y)|)
\end{aligned}
$$

for each $x, x_{1}, x_{2} \in A$ and $y, y_{1}, y_{2} \in B$, then F^{*} / θ^{*} is the tensor product $A \otimes B$ of the abelian groups A and B. Since

$$
\begin{aligned}
& \left(\left|\left(\left[x_{1} x_{2} \cdots x_{m}\right], y\right)\right|,\left[\left|\left(x_{1}, y\right)\right|\left|\left(x_{1}, y\right)\right| \cdots\left|\left(x_{m}, y\right)\right|\right]\right) \\
& \quad=\left(\left|\left(x_{1}+x_{2}+\cdots+x_{m}, y\right)\right|,\left|\left(x_{1}, y\right)\right|+\left|\left(x_{2}, y\right)\right|+\cdots+\left|\left(x_{m}, y\right)\right|\right) \in \theta^{*}, \\
& \quad\left(\left|\left(x,\left[y_{1} y_{2} \cdots y_{m}\right]\right)\right|,\left[\left|\left(x, y_{1}\right)\right|\left|\left(x, y_{2}\right)\right| \cdots\left|\left(x, y_{m}\right)\right|\right]\right) \\
& \quad=\left(\left|\left(x, y_{1}+y_{2}+\cdots+y_{m}\right)\right|,\left|\left(x, y_{1}\right)\right|+\left|\left(x, y_{2}\right)\right|+\cdots+\left|\left(x, y_{m}\right)\right|\right) \in \theta^{*},
\end{aligned}
$$

and

$$
\left(\left|\left(x^{\langle n\rangle}, y\right)\right|,\left|\left(x, y^{\langle n\rangle}\right)\right|\right)=(|(\langle n\rangle x, y)|,|(x,\langle n\rangle y)|) \in \theta^{*},
$$

then $R \cong \theta^{*}$ and hence $\theta \subseteq \theta^{*}$.

