194. On Free Abelian m-Groups. II

By F. M. SIOSON

University of Ateneo de Manila, Manila

(Comm. by Kinjirô KUNUGI, M.J.A., Nov. 13, 1967)

In the second part of this article, the notion of free abelian m-group will be introduced and their properties are given.

Definition. An *m*-group (M, []) will be called *abelian* if and only if $[x_1x_2 \cdots x_m] = [x_{\sigma(1)}x_{\sigma(2)} \cdots x_{\sigma(m)}]$ for every permutation σ of 1, 2, \cdots , *m* and each $x_1, x_2, \cdots, x_m \in M$.

Definition. An abelian *m*-group F is said to be *free* on X if and only if for a one-to-one function $i: X \rightarrow F$, an abelian *m*-group M, every function $g: X \rightarrow M$ has a unique homomorphism extension $h: F \rightarrow M$ that makes the following diagram commutative

that is to say, $h \circ i = g$.

Consider the (restricted) direct sum $\sum_{x \in X} Z_x$ of copies $Z_x = Z$ of the additive group of the integers Z. Recall that $f \in \sum_{x \in X} Z_x$ if and only if f(x)=0 for all x except for a finite number x_1, \dots, x_n of elements of X. For each $x \in X$, if |x| denotes the member of $\sum_{x \in X} Z_x$ such that |x|(x)=1 but otherwise is zero, then

Set

$$f = f(x_1) |x_1| + \cdots + f(x_n) |x_n|.$$

$$F = \Big\{ f \in \sum_{x \in X} Z_x \mid \sum_{x \in X} f(x) \equiv 1 \pmod{m-1} \Big\}.$$

Under the m-ary operation defined by

 $\lfloor f_1 f_2 \cdots f_m \rfloor = f_1 + f_2 + \cdots + f_m,$

where $f_i + f_j$ is the function such that $(f_i + f_j)(x) = f_i(x) + f_j(x)$, the system (F, []) is obviously an abelian *m*-group. Note that every integer $f(x_i)$ is a sum of a minimal number of the integers $\langle 0 \rangle$ and $\langle -1 \rangle$. This minimal sum is unique except for ordering. This means that every element $f = f(x_i) |x_1| + \cdots + f(x_n) |x_n|$ of F possesses a unique factorization (up to ordering or arrangement)

$$f = |x_1|^{\langle e_{11} \rangle} + |x_1|^{\langle e_{12} \rangle} + \dots + |x_1|^{\langle e_{1r_1} \rangle} + \dots + |x_n|^{\langle e_{nr_n} \rangle} \\ + |x_n|^{\langle e_{n1} \rangle} + |x_n|^{\langle e_{n2} \rangle} + \dots + |x_n|^{\langle e_{nr_n} \rangle} \\ = [|x_1|^{\langle e_{11} \rangle} |x_1|^{\langle e_{12} \rangle} \dots |x_1|^{\langle e_{1r_1} \rangle} \dots |x_n|^{\langle e_{n1} \rangle} \dots |x_n|^{\langle e_{nr_n} \rangle}],$$

where $e_{ij} = 0$ or -1 and $\sum_{i=1}^{n} \sum_{j=1}^{n} \langle e_{ij} \rangle \equiv 1 \pmod{m-1}$. Observe that

No. 9]

 $|x|^{\langle -1 \rangle}$ is the element of $\sum_{x \in X} Z_x$ such that $|x|^{\langle -1 \rangle}(x) = -m+2$ but otherwise is 0. Note also that it is the unique element such that $(|x|, |x|, \dots, |x|, |x|^{\langle -1 \rangle})$ and $(|x|^{\langle -1 \rangle}, |x|, \dots, |x|)$ are (m-1)-adic identies or, in other words, $|x|+|x|+\dots+|x|+|x|^{\langle -1 \rangle}$ is the function which is identically 0.

Theorem 4. The abelian m-group (F, []) defined above is free on X.

Proof. For an arbitrary *m*-group *M* and *g*: $X \to M$ define *h*: $F \to M$ by $h([|x_1|^{\langle e_1 \rangle}|x_2|^{\langle e_2 \rangle} \cdots |x_k|^{\langle e_k \rangle}] = [g(x_1)^{\langle e_1 \rangle}g(x_2)^{\langle e_2 \rangle} \cdots g(x_k)^{\langle e_k \rangle}]$ where $e_i = 0$ or -1, $\sum_{i=1}^k \langle e_i \rangle \equiv 1 \pmod{m-1}$, and $g(x)^{\langle -1 \rangle}$ is the unique element of *M* such that $(g(x), g(x), \cdots, g(x), g(x), (x^{-1}))$ and $(g(x)^{\langle -1 \rangle}, g(x), \cdots, g(x))$ are (m-1)-adic identities of *M*. It readily follows that *h* is an *m*-group homomorphism, i.e. $h([f_1f_2\cdots f_m])=[h(f_1)h(f_2)\cdots h(f_m)]$ for all $f_1, f_2, \cdots, f_m \in F$. If $i: X \to F$ is defined naturally by i(x) = |x|, then $(h \circ i)(x) = h(i(x)) = h(|x|) = g(x)$. Note that if $h \circ i = g = h' \circ i$, then h' = h.

Corollary 5. Every m-group M is the quotient m-group of a free m-group.

Proof. Let $i: M \to F$ be that i(x) = |x| for all $x \in M$, where F is a free *m*-group on M, and $1: M \to M$ be the identity function. Then, by Theorem 4, there exists uniquely a homomorphism $h: F \to M$ such that $h \circ i = 1$. Hence h is onto M and $F/h \circ h^{-1}$ is isomorphic to M.

Corollary 6. If F_1 is an abelian m-group free on X_1 , F_2 is an abelian m-group free on X_2 , and X_1 and X_2 have the same number of elements, then F_1 and F_2 are isomorphic.

Proof. In the following diagram

let $e: X_1 \rightarrow X_2$ be one-to-one and onto and $i_k: X_k \rightarrow F_k(k=1, 2)$ be oneto-one. Then, by Theorem 4, there exist uniquely homomorphisms $h_1: F_1 \rightarrow F_2$ and $h_2: F_2 \rightarrow F_1$ such that $h_1 \circ i_1 = i_2 \circ e$ and $h_2 \circ i_2 = i_1 \circ e^{-1}$. Then, $h_2 \circ h_1 \circ i_1 = h_2 \circ i_2 \circ e = i_1 \circ e^{-1} \circ e = i_1$ and hence $h_2 \circ h_1 = 1$. Similarly, $h_1 \circ h_2 \circ i_2 = h_1 \circ i_1 \circ e^{-1} = i_2 \circ e \circ e^{-1} = i_2$ and hence $h_1 \circ h_2 = 1$. Whence h_1 and h_2 are homomorphisms that are inverses of each other.

Corollary 7. The free abelian m-group F on X is a coset of

the free abelian (2-group) group $\sum_{x \in X} Z_x$ on X under the (normal) subgroup N of all $f \in F$ such that

$$\sum_{x \in X} f(x) \equiv 0 \pmod{m-1}.$$

Proof. Obviously, N is closed under + and - and therefore a subgroup of $\sum_{x \in X} Z_x$. Moreover, observe that F = N + |x| for any $x \in X$.

Corollary 8. The free abelian m-group on a singleton $\{x\}$ (i.e. the infinite cyclic m-group (|x|)) is isomorphic to the m-group (Z, []) of integers under the operation

 $[n_1n_2\cdots n_m] = n_1+n_2+\cdots+n_m+1$

for all $n_1, n_2, \cdots, n_m \in \mathbb{Z}$.

Proof. By the preceding Corollary 7, the infinite cyclic *m*-group is a coset of the additive group Z of integers by the (normal) subgroup Z_{m-1} of all multiples of m-1. In fact, $(|x|)=1+Z_{m-1}$. The function $h: (|x|) \rightarrow Z$ such that $h(\langle n \rangle) = n$ is clearly one-to-one and onto and also satisfies the relation

 $\begin{array}{l}h(\lceil \langle n_1 \rangle \langle n_2 \rangle \cdots \langle n_m \rangle \rceil) = h(\langle n_1 + n_2 + \cdots + n_m + 1 \rangle) \\ = n_1 + n_2 + \cdots + n_m + 1 = \lceil n_1 n_2 \cdots n_m \rceil = \lceil h(n_1)h(n_2) \cdots h(n_m) \rceil \\ \text{for all } n_1, n_2, \cdots, n_m \in \mathbb{Z}.\end{array}$

Now, consider any two abelian *m*-groups M and N. Let F be the free abelian *m*-group on the cartesian product $M \times N$. As we have seen before, an arbitrary element of F may, up to ordering, be uniquely representable in the form

$$\begin{bmatrix} |(x_1, y_1)|^{\langle e_1 \rangle} |(x_2, y_2)|^{\langle e_2 \rangle} \cdots |(x_k, y_k)|^{\langle e_k \rangle} \\ = |(x_1, y_1)|^{\langle e_1 \rangle} + |(x_2, y_2)|^{\langle e_2 \rangle} + \cdots + |(x_k, y_k)|^{\langle e_k \rangle}$$

where $e_i = 0$ or -1 and $\sum_{i=1}^{n} \langle e_i \rangle \equiv 1 \pmod{m-1}$. Let R be the symmetric relation on F that contains all pairs $(|(x^{\langle n \rangle}, y)|, |(x, y^{\langle n \rangle})|), (|([x_1, x_2 \cdots x_m], y)|, [|(x_1, y)||(x_2, y)| \cdots |(x_m, y)|])$, and

 $(|(x, [y_1y_2\cdots y_m])|, [|(x, y_1)||(x, y_2)|\cdots |(x, y_m)|])$

for all $x, x_1, \dots, x_m \in M, y, y_1, \dots, y_m \in N$, and $n \in Z$. Let θ be the least congruence (relation) on F containing R. Note that $(v, w) \in \theta$ if and only if $v = [v_1v_2 \cdots v_{\langle k \rangle}], w = [w_1w_2 \cdots w_{\langle k \rangle}]$, and for each $i=1, 2, \dots, \langle k \rangle$, there exists $u_{i1}, u_{i2}, \dots, u_{ir_i} \in F$ such that $v_i = u_{i1}, w_i = u_{ir_i}$ and $(u_{ij}, u_{ij+1}) \in R$.

By the Post Coset Theorem, M is a coset of an abelian group $A = M \cup M^2 \cup \cdots \cup M^{m-1}$ and N of $B = N \cup N^2 \cup \cdots \cup N^{m-1}$. Recall that if F^* is the abelian group free on $A \times B$ and θ^* is the smallest congruence (relation) on F^* containing all ordered pairs

$$\begin{array}{c}(\mid (x_1+x_2,\,y)\mid,\mid (x_1,\,y)\mid+\mid (x_2,\,y)\mid),\\(\mid (x,\,y_1+y_2)\mid,\mid (x,\,y_1)\mid+\mid (x,\,y_2)\mid),\,(\mid (-x,\,y)\mid,\mid (x,\,-y)\mid)\end{array}$$

for each $x, x_1, x_2 \in A$ and $y, y_1, y_2 \in B$, then F^*/θ^* is the tensor product $A \otimes B$ of the abelian groups A and B. Since $(|([x_1x_2 \cdots x_m], y)|, [|(x_1, y)||(x_1, y)| \cdots |(x_m, y)|])$ $= (|(x_1+x_2+\cdots +x_m, y)|, |(x_1, y)|+|(x_2, y)|+\cdots +|(x_m, y)|) \in \theta^*,$ $(|(x, [y_1y_2 \cdots y_m])|, [|(x, y_1)||(x, y_2)| \cdots |(x, y_m)|])$ $= (|(x, y_1+y_2+\cdots +y_m)|, |(x, y_1)|+|(x, y_2)|+\cdots +|(x, y_m)|) \in \theta^*,$ and

 $(|(x^{\langle n \rangle}, y)|, |(x, y^{\langle n \rangle})|) = (|(\langle n \rangle x, y)|, |(x, \langle n \rangle y)|) \in \theta^*,$ then $R \subseteq \theta^*$ and hence $\theta \subseteq \theta^*$.