211. A Product Theorem Concerning Some Generalized Compactness Properties¹⁾

By L. H. MARTIN

(Comm. by Kinjirô KUNUGI, M.J.A., Dec. 12, 1967)

1. Introduction. In the last forty years a number of product theorems concerning compact topological spaces have been proven. In particular, Tychonoff [9] showed that the product of two compact spaces is a compact space, Dieudonné [1] showed that the product of a compact space and a paracompact space is a paracompact space, and Dowker [2] showed that the product of a compact space and a countably paracompact space is a countably paracompact space. These are three of the best-known theorems of the type: If X is a compact topological space and Y is a topological space with some generalized compactness property π , then the product space $X \times Y$ has the property π . The purpose of this paper is to prove a general theorem of this type and also to offer a unified approach to many generalized compactness properties.

2. A characterization of some generalized compactness properties. For each topological space X, let $\mathfrak{P}(X)$ be the set of all subsets of X. Let \mathfrak{T} be the class of all topological spaces, let $\mathfrak{S} = \bigcup \{\mathfrak{PPR}(X) : X \in \mathfrak{T}\}$ and let $Q: \mathfrak{T} \to \mathfrak{S}$ be a function with $Q(X) \in \mathfrak{PPR}(X)$ whenever $X \in \mathfrak{T}$.

Definition 1. Q is slattable over X if and only if, whenever Y is a topological space and $\Lambda \in Q(X)$, there exists $\Gamma \in Q(X \times Y)$ such that whenever $G \in \Gamma$, then $G \subset L \times Y$ for some $L \in \Lambda$.

Definition 2. If Q is slattable over every topological space and m and n are infinite cardinals with $n \leq m$, then Q_n (respectively Q_n^m) is the class of all topological spaces X such that, if \mathfrak{C} is an open cover of X (\mathfrak{C} is an open cover of X with card (\mathfrak{C}) $\leq m$), then there exists an open refinement \mathfrak{R} of \mathfrak{C} and $\Gamma \in Q(X)$ with each element of Γ intersecting fewer than n elements of \mathfrak{R} .

Definition 3. The functions C, P, and M from \mathfrak{T} into \mathfrak{S} are defined by:

 $C(X) = \{\{X\}\}\$ $P(X) = \{\{\emptyset: \& \text{ is an open cover of } X\}$ $M(X) = \{\{\{x\}: x \in X\}\}.$

¹⁾ This research was supported by National Science Foundation Undergraduate Science Education Program Grant GE-4173. The author would like to express his deepest gratitude to Dr. John Greever for his invaluable guidance and assistance.

As a simple consequence of the definition, we have the following lemma:

Lemma 1. C, P, and M are slattable over every topological space.

As special cases of C_n , C_n^m , P_n , P_n^m , and M_n , M_n^m (which, by Lemma 1, may be defined), note the following easily verified examples:

- (i) C_{\aleph_0} is the class of all compact spaces.
- (ii) C_{\aleph_1} is the class of all Lindelöf spaces.
- (iii) $C_{\mathbf{x}_0}^{\mathbf{x}_0}$ is the class of all countably compact spaces.
- (iv) C_{\aleph_k} is the class of all k-compact spaces (in the sense of Erdös and Hajnal [3]).
- (v) C_m is the class of all *m*-Lindelöf spaces (in the sense of Frolik [4]).
- (vi) $C_{m'}$ is the class of all (m, ∞) -compact spaces^{*)} (in the sense of Gál [5]).
- (vii) $C_{\mathbf{x}_0}^m$ is the class of all *m*-compact spaces (in the sense of Frolik [4]).
- (viii) $C_{m'}^{n}$ is the class of all (m, n)-compact spaces^{*)} (in the sense of Gál [5]).
- (ix) P_{\aleph_0} is the class of all paracompact spaces.
- (x) $P_{\mathbf{x}_0}^{\mathbf{x}_0}$ is the class of all countably paracompact spaces.
- (xi) $P_{\mathbf{x}_0}^m$ is the class of all *m*-paracompact spaces (in the sense of Morita [8]).
- (xii) M_{\aleph_0} is the class of all metacompact spaces.
- (xiii) $M_{\mathbf{x}_0}^{\mathbf{x}_0}$ is the class of all countably metacompact spaces.

3. Proof of the theorem. The following three lemmas use techniques developed by J. Dieudonné [1] and C. H. Dowker [2].

Lemma 2. Let X be a compact topological space, Y be a topological space, and \mathbb{C} be an open cover of $X \times Y$. Then there exists an open cover \mathfrak{D} of Y such that $X \times D$ is covered by finitely many sets in \mathbb{C} whenever $D \in \mathfrak{D}$.

Proof. If $(x, y) \in X \times Y$, let M_{xy} , N_{xy} , and C_{xy} be open sets in X, Y, and \mathfrak{C} respectively such that $x \in M_{xy}$, $y \in N_{xy}$, and $M_{xy} \times N_{xy} \subset C_{xy} \in \mathfrak{C}$. For each $y \in Y$, $\{M_{xy} \times N_{xy} : x \in X\}$ is an open cover of the compact space $X \times \{y\}$, so there exists a finite subset F_y of X such that $\{M_{xy} \times N_{xy} : x \in F_y\}$ is a finite open cover of $X \times \{y\}$. Let $N_y = \cap \{N_{xy} :$ $x \in F_y\}$ and let $\mathfrak{D} = \{N_y : y \in Y\}$. Then \mathfrak{D} is an open cover of Y and if $N_y \in \mathfrak{D}$, then $X \times N_y \subset \bigcup \{M_{xy} \times N_{xy} : x \in F_y\} \subset \bigcup \{C_{xy} : x \in F_y\}$.

Lemma 3. Let X be a compact space, Y a topological space, and \mathfrak{C} an open cover of $X \times Y$ with $card(\mathfrak{C}) \leq m$, where m is an infinite cardinal. Then there exists an open cover \mathfrak{D} of Y with

^{*)} Here m' is the least cardinal greater than m.

 $card(\mathfrak{D}) \leq m$ and for each $D \in \mathfrak{D}$, there exists a subcollection \mathfrak{C}_D of \mathfrak{C} with $card(\mathfrak{C}_D) < m$ such that \mathfrak{C}_D covers $X \times D$.

Proof. Let $\mathfrak{C} = \{C_{\alpha} : \alpha \in m\}$. For each $\alpha \in m$ let $S_{\alpha} = \bigcup \{C_{\beta} : \beta < \alpha\}$, $D_{\alpha} = \{y : y \in Y, X \times \{y\} \subset S_{\alpha}\}$, and $\mathfrak{D} = \{D_{\alpha} : \alpha \in m\}$. Then $\operatorname{card}(\mathfrak{D}) \leq m$.

If $y \in Y$, then $X \times \{y\}$ is compact and thus covered by a finite subcollection \mathfrak{F} of \mathfrak{G} . In other words, $X \times \{y\} \subset \bigcup \{C_{\beta}: \beta < \alpha\} = S_{\alpha}$, for some $\alpha \in m$; so $y \in D_{\alpha}$. Thus, \mathfrak{D} is a cover of Y.

Also, if $D_{\gamma} \in \mathfrak{D}$, then $\gamma \in m$ and $X \times D_{\gamma} = X \times \{y: y \in Y, X \times \{y\} \subset S_{\gamma}\}$ $\subset S_{\gamma} = \bigcup \{C_{\beta}: \beta < \gamma\}$. Consequently, $\mathfrak{G}_{D_{\gamma}} = \{C_{\beta}: \beta < \gamma\}$ is a subcollection of \mathfrak{C} which covers $X \times D_{\gamma}$ and card $(\mathfrak{C}_{D_{\gamma}}) < m$.

Suppose $D_{\alpha} \in \mathfrak{D}$ and $y \in D_{\alpha}$. Then $X \times \{y\} \subset S_{\alpha}$ and S_{α} is open in $X \times Y$. For each $x \in X$, let M_x and N_x be open sets in X and Y respectively such that $x \in M_x$, $y \in N_x$ and $(x, y) \in M_x \times N_x \subset S_{\alpha}$. By the compactness of $X \times \{y\}$ there exists a finite subset F of X such that $X \times \{y\} \subset \bigcup \{M_x \times N_x : x \in F\}$. If N^y is the open set $\cap \{N_x : x \in F\}$, then $X \times N^y \subset \bigcup \{M_x \times N_x : x \in F\} \subset S_{\alpha}$. Hence $y \in N^y \subset D_{\alpha}$, and thus D_{α} is open.

Lemma 4. Let X and Y be topological spaces, \mathbb{C} an open cover of $X \times Y$, and m and n infinite cardinals. If \mathbb{D} is an open cover of Y such that $X \times D$ is covered by fewer than m elements of \mathbb{C} whenever $D \in \mathbb{D}$ and if \mathcal{R} is an open refinement of \mathbb{D} , then there exists an open refinement \Re of \mathbb{C} such that whenever $S \subset Y$ and S intersects fewer than n elements of \mathcal{R} , then $X \times S$ intersects fewer than $m \cdot n$ elements of \Re .

Proof. For each $R \in \mathcal{R}$, let \mathfrak{C}_R be a subcollection of \mathfrak{C} such that card $(\mathfrak{C}_R) < m$ and \mathfrak{C}_R covers $X \times R$.

Let $\mathfrak{R}_R = \{(X \times R) \cap C_R : C_R \in \mathfrak{C}_R\}$ and let $\mathfrak{R} = \bigcup_{R \in \mathfrak{R}} \{\mathfrak{R}_R\}$. Clearly \mathfrak{R} refines \mathfrak{C} .

 \Re covers $X \times Y$ since if $(x, y) \in X \times Y$, then y belongs to some $R \in \mathcal{R}$ and thus $(x, y) \in X \times R$. $X \times R$ is covered by \mathfrak{G}_R , so $(x, y) \in C_R$ for some $C_R \in \mathfrak{G}_R$. Thus, $(x, y) \in (X \times R) \cap C_R \in \mathfrak{R}$.

 \Re is open since if $R \in \Re$, $R = (X \times R) \cap C_R$ for some $R \in \Re$, $C_R \in \mathfrak{C}_R$. But both $X \times R$ and C_R are open in $X \times Y$.

If S is a subset of Y intersecting fewer than n sets of \mathcal{R} , then $X \times S$ intersects fewer than n sets of the form $X \times R$ where $R \in \mathcal{R}$ and R is one of the sets intersecting S. Since there are fewer than m sets $C_R \in \mathfrak{C}_R$ such that $(X \times R) \cap C_R$ is an element of \mathfrak{R} , $X \times S$ will intersect at most the fewer than m sets $(X \times R) \cap C_R$ associated with the fewer than n sets $X \times R$. Hence, $X \times S$ will intersect fewer than $m \cdot n$ sets of \mathfrak{R} .

Theorem. Let X be a compact space and Y belong to Q_n or Q_n^n . Then $X \times Y$ belongs to Q_n or Q_n^n , respectively.

Proof. Assume $Y \in Q_n$ or Q_n^n . Let \mathbb{C} be an arbitrary open

No. 10] Product Theorem Concerning Some Compactness Properties

cover of $X \times Y$.

Case (i), $Y \in Q_n$. By Lemma 2 there exists an open cover \mathfrak{D} of Y such that $X \times D$ is covered by finitely many (i.e. $\langle \mathbf{k}_0 \rangle$) sets of \mathfrak{C} whenever $D \in \mathfrak{D}$.

Case (ii), $Y \in Q_n^n$. By Lemma 3 there exists a cover \mathfrak{D} of Y such that card $(\mathfrak{D}) \leq n$ and whenever $D \in \mathfrak{D}$, there exists a subcollection \mathfrak{C}_D of \mathfrak{C} with card $(\mathfrak{C}_D) < n$ such that \mathfrak{C}_D covers $X \times D$.

In either case, extract an open refinement \mathcal{R} of \mathfrak{D} such that for some $\Lambda \in Q(Y)$, each element of Λ intersects fewer than n sets of \mathcal{R} . By Lemma 4 there exists a refinement \mathfrak{R} of \mathfrak{C} such that if $L \in \Lambda$, then $X \times L$ intersects fewer than $n \cdot \mathbf{R}_0 = n$ or $n \cdot n = n$ sets of \mathfrak{R} in cases (i) and (ii) respectively (since L intersects fewer than nsets of \mathcal{R} .) Since Q is slattable over Y, there exists $\Gamma \in Q(X \times Y)$ such that whenever $G \in \Gamma$, $G \subset X \times L$ for some $L \in \Lambda$. Hence each $G \in \Gamma$ intersects fewer than n sets of \mathfrak{R} . Thus, \mathfrak{R} is the required refinement.

The following corollaries are an indication of the type of results that follow immediately from the theorem.

Corollary 1. If X and Y are compact spaces, then $X \times Y$ is compact [9].

Corollary 2. If X is compact and Y is paracompact, then $X \times Y$ is paracompact $\lceil 1 \rceil$.

Corollary 3. If X is compact and Y is countably paracompact, then $X \times Y$ is countably paracompact $\lceil 2 \rceil$.

Corollary 4. If X is compact and Y is (m, ∞) -compact, then $X \times Y$ is (m, ∞) -compact [5].

References

- J. Dieudonné: Une généralisation des espaces compacts. J. Math. Pures Appl., 23, 65-76 (1944).
- [2] C. H. Dowker: On countable paracompactness. Can. J. Math., 3, 219-224 (1951).
- [3] P. Erdös and H. Hajnal: On the topological product of discrete λ-compact spaces. General topology and its Relations to Modern Analysis and Algebra. Prague: Nakladatelstvi Československé Akademie Věd, 148-151 (1962).
- Z. Frolik: Generalisations of sompact and Lindelöf spaces. Czech. Math. J., 9, 172-217 (1959).
- [5] I. Gál: On a generalized notion of compactness I, II. Proc. Nederl. Akad. Wetensch., 60, 421-435 (1957).
- [6] Y. Hayashi: On countably metacompact spaces. Bull. Univ. Osaka Prefecture, Ser. A, 8, 161-164 (1959-1960).
- [7] J. L. Kelley: General Topology. New York. Van Nostrand (1955).
- [8] K. Morita: Paracompactness and product spaces. Fund. Math., **50**, 223-236 (1961).
- [9] A. Tychonoff: Über die topologische Erweiterung von Raümen. Math. Annalen, 102, 544-561 (1930).

963