4. Relations between Unitary ρ-Dilatations and Two Norms

By Takayuki Furuta
Faculty of Engineering, Ibaraki University
(Comm. by Kinjirô Kunugi, m.J.A., Jan. 12, 1968)

Introduction. In this paper we discuss classes of power bounded operators on a Hilbert space H and we use the notations and terminologies of [5]. Following [1] [2] [5], an operator T on H possesses a unitary ρ-dilatation if there exists a Hilbert space K containing H as a subspace, a positive constant ρ and a unitary operator U on K satisfying the following representation

$$
\begin{equation*}
T^{n}=\rho \cdot P U^{n} \quad(n=1,2, \cdots) \tag{1}
\end{equation*}
$$

where P is the orthogonal projection of K on H. Put C_{ρ} the class of operators, whose powers T^{n} admit a representation (1).

It is well known that $T \in C_{1}$ is characterized by $\|T\| \leqq 1$. Moreover $T \in C_{2}$ is characterized by $\|T\|_{N} \leqq 1$, where $\|T\|_{N}$, usually called the numerical radius of T, is defined by

$$
\|T\|_{N}=\sup |(T h, h)| \quad \text { for every unit vector } h \text { in } H .
$$

The latter fact was discovered by C.A. Berger (not yet published).
Using function theoretic methods, B. Sz-Nagy and C. Foias have given a characterization of C_{ρ} and shown the monotonity of C_{ρ} as a generalization of C_{1} and C_{2}. Hence we may naturally expect that the condition for $T \in C_{\rho}$ depends upon $\|T\|$ and $\|T\|_{N}$ together. In this paper, as a continuation of calculations in the preceding paper [3], we give a simple sufficient condition for $T \in C_{\rho}$ related to both $\|T\|$ and $\|T\|_{N}$ and its graphic expression.

1. The following theorems are known.

Theorem A ([5]). An operator T in H belongs to the class C_{ρ} if and only if it satisfies the following conditions:

$$
\left\{\begin{array}{l}
\left(I_{\rho}\right) \quad\|h\|^{2}-2\left(1-\frac{1}{\rho}\right) \operatorname{Re}(z T h, h)+\left(1-\frac{2}{\rho}\right)\|z T h\|^{2} \geqq 0 \tag{i}\\
\quad \text { for } h \text { in } H \text { and }|z| \geqq 1, \\
(I I) \quad \text { the spectrum of } T \text { lies in the closed unit disk. }
\end{array}\right.
$$

(ii) If $\rho \leqq 2$, then the conditon (I_{ρ}) implies (II).

Theorem B ([5]). C_{ρ} is non-decreasing with respect to the index ρ in the sense that

$$
C_{\rho_{1}} \subset C_{\rho_{2}} \quad \text { if } 0 \leqq \rho_{1}<\rho_{2} .
$$

Theorem C ([1]).
(i) $\left\{\begin{array}{l}\text { If }\|T\| \leqq \frac{\rho}{2-\rho} \text { and } 0 \leqq \rho \leqq 1, \text { then } T \in C_{\rho} . \\ \text { If }\|T\| \leqq 1, \text { then } T \in C_{\rho} \text { for } \rho \geqq 1 .\end{array}\right.$
(ii) $\left\{\begin{array}{l}\text { If } T \in C_{\rho} \text { for } 0 \leqq \rho \leqq 1, \text { then } r(T) \leqq \frac{\rho}{2-\rho} . \\ \text { If } T \in C_{\rho} \text { for } \rho \geqq 1, \text { then } r(T) \leqq 1 .\end{array}\right.$
where $r(T)$ means the spectral radius of T.
An operator T is called to be normaloid if $\|T\|=\|T\|_{N}$ or equivalently the spectral radius is equal to $\|T\|$ ([4]).

Theorem D ([1][3]). If T is normaloid, $T \in C_{\rho}$ if and only if

$$
\|T\| \leqq\left\{\begin{array}{cl}
\frac{\rho}{2-\rho} & \text { if } 0 \leqq \rho \leqq 1 \\
1 & \text { if } \rho \geqq 1
\end{array}\right.
$$

Theorem D was proved by E. Durszt for normal operators and by C. A. Berger and J. G. Stampfli ([1]). The author has given a simplified proof of the same theorem in [3] independently.
2. For $0 \leqq \rho \leqq 2$, the condition (I_{ρ}) is replaced by

$$
(2-\rho)\|z T h\|^{2}-2(1-\rho) \operatorname{Re}(z T h, h)-\rho\|h\|^{2} \leqq 0 \quad \text { for } h \in H
$$

That is,
$\left(I_{\rho}^{\prime}\right) \quad(2-\rho)\|T h\|^{2} r^{2}-2(1-\rho)|(T h, h)| r \cdot \cos \psi-\rho \leqq 0$
for every unit vector h in H, where $z=r e^{i \theta}, 0 \leqq r \leqq 1, \psi=\varphi+\theta$ and φ is the argument of ($T h, h$). Since the left-hand side of (I_{ρ}^{\prime}) is negative for $r(0 \leqq r \leqq 1)$ if it is so at $r=1$, ($\left.I_{\rho}^{\prime}\right)$ is equivalent to
$\left(I_{\rho}^{\prime \prime}\right) \quad(2-\rho)\|T h\|^{2}-2(1-\rho)|(T h, h)| \cos \psi-\rho \leqq 0$
for every unit vector h in H.
Theorem 1. (I_{ρ}) implies $\|T\|_{N} \leqq\left\{\begin{array}{cl}\frac{\rho}{2-\rho} & \text { if } 0 \leqq \rho \leqq 1 \\ 1 & \text { if } 1 \leqq \rho \leqq 2 .\end{array}\right.$
Proof. Let $0 \leqq \rho \leqq 1$. By $\left(I_{\rho}^{\prime \prime}\right),\left(I_{\rho}\right)$ is equivalent to

$$
F_{1}(\rho, h) \equiv(2-\rho)\left|T h \|^{2}+2(1-\rho)\right|(T h, h) \mid-\rho \leqq 0
$$

for every unit vector h in H. That is

$$
\left(I_{\rho}\right) \text { is true if and only if } \sup _{\|h\|=1} F_{1}(\rho, h) \leqq 0 .
$$

The following inequality is clear
(*) $\quad(2-\rho)\|T\|_{N}^{2}+2(1-\rho)\|T\|_{N}-\rho \leqq \sup _{\|h\|=1} F_{1}(\rho, h) \leqq(2-\rho)\|T\|^{2}$

$$
+2(1-\rho)\|T\|_{N}-\rho \leqq(2-\rho)\|T\|^{2}+2(1-\rho)\|T\|-\rho .
$$

Consequently (I_{ρ}) implies

$$
\begin{aligned}
& (2-\rho)\|T\|_{N}^{2}+2(1-\rho)\|T\|_{N}-\rho \leqq 0, \\
& \left(\|T\|_{N}+1\right) \cdot\left\{(2-\rho)\|T\|_{N}-\rho\right\} \leqq 0 .
\end{aligned}
$$

Hence

$$
\|T\|_{N} \leqq \frac{\rho}{2-\rho}
$$

Now let $1 \leqq \rho \leqq 2$, then the condition ($I_{\rho}^{\prime \prime}$) is equivalent to

$$
F_{2}(\rho, h) \equiv(2-\rho)\|T h\|^{2}+2(\rho-1)|(T h, h)|-\rho \leqq 0
$$

for every unit vector h in H. That is

$$
\left(I_{\rho}\right) \text { is true if and only if } \sup _{\|\mid\|=1} F_{2}(\rho, h) \leqq 0
$$

The following inequality is also clear.
(**) $(2-\rho)\|T\|_{N}^{2}+2(\rho-1)\|T\|_{N}-\rho \leqq \sup _{\|h\|=1} F_{2}(\rho, h) \leqq(2-\rho)\|T\|^{2}$

$$
+2(\rho-1)\|T\|_{N}-\rho \leqq(2-\rho)\left\|T_{T}\right\|^{2}+2(\rho-1)\|T\|-\rho
$$

Consequently (I_{ρ}) implies

$$
\begin{aligned}
& (2-\rho)\|T\|_{N}^{2}+2(\rho-1)\|T\|_{N}-\rho \leqq 0 \\
& \left(\|T\|_{N}-1\right)\left\{(2-\rho)\|T\|_{N}+\rho\right\} \leqq 0
\end{aligned}
$$

Hence

$$
\|T\|_{N} \leqq 1 \quad \text { q.e.d. }
$$

Theorem 1 gives a precise limitation of $\|T\|_{N}$ for $T \in C_{\rho}$. Since $r(T) \leqq\|T\|_{N}$ ([4]) we get immediately.

Corollary 1 ([5]). For $\rho \leqq 2$, (I_{ρ}) implies (II).
C. A. Berger has characterized $T \in C_{2}$ by $\|T\|_{N} \leqq 1$. This fact and the monotonity of C_{ρ} give the corollary 1. But in our method the estimation of $\|T\|_{N}$ comes to give the proof without complicated calculations. Moreover by (*) and (**) in the proof of Theorem 1 we can sharpen Theorem C and give a simple sufficient condition for $T \in C_{\rho}$ as shown in the next section.
3. The following theorems are obvious by Theorem 1 and inequalities (*), (**).

Theorem 2. (i) For $0 \leqq \rho \leqq 1 . \quad T \in C_{\rho}$ if and only if $\sup _{\|h\|=1} F_{1}(\rho, h) \leqq 0$. (ii) For $1 \leqq \rho \leqq 2$. $T \in C_{\rho}$ if and only if $\sup _{\|h\|=1} F_{2}(\rho, h) \leqq 0$.

Theorem 3. (i) For $0 \leqq \rho \leqq 1$. If $T \in C_{\rho}$, then $\|T\|_{N} \leqq \frac{\rho}{2-\rho}$.
(ii) For $1 \leqq \rho \leqq 2$. If $T \in C_{\rho}$, then $\|T\|_{N} \leqq 1$.

Theorem 4. (i) For $0 \leqq \rho \leqq 1$. If $(2-\rho)\|T\|^{2}+2(1-\rho)\|T\|_{N}$ $-\rho \leqq 0$, then $T \in C_{\rho}$.
(ii) For $1 \leqq \rho \leqq 2$. If $(2-\rho)\|T\|^{2}+2(\rho-1)\|T\|_{N}-\rho \leqq 0$, then $T \in C_{\rho}$.

Corollary 2 ([1]). (i) For $0 \leqq \rho \leqq 1$. If $\|T\| \leqq \frac{\rho}{2-\rho}$, then $T \in C_{\rho}$.
(ii) For $\rho \geqq 1$. If $\|T\| \leqq 1$, then $T \in C_{\rho}$.

Proof of Corollary 2. (ii) is clear and (i) is also derived from (i) of Theorem 4 replacing $\|T\|_{N}$ by $\|T\|$. q.e.d.

Theorem 5. There exists k in $[1 / 2,1]$ such that
(i) if $T \in C_{\rho}$ for $0 \leqq \rho \leqq 1$, then $(2-\rho)\|T\|^{2} k^{2}+2(1-\rho)\|T\|_{N}$ $-\rho \leqq 0$.
(ii) if $T \in C_{\rho}$ for $1 \leqq \rho \leqq 2$, then $(2-\rho)\|T\|^{2} k^{2}+2(\rho-1)\|T\|_{N}$ $-\rho \leqq 0$.

Proof. Take sequences of unit vectors $\left\{h_{n}\right\}$ in (*) and (**) which $\left|\left(T h_{n}, h_{n}\right)\right|$ converges to $\|T\|_{N}$, then $\|T\|_{N} \leqq \sup \left\|T h_{n}\right\| \leqq\|T\|$. By this inequality and $1 / 2\|T\| \leqq\|T\|_{N} \leqq\|T\|$ ([4]), we get Theorem 5. q.e.d.
4. We consider an operator T which $\|T\|$ and $\|T\|_{N}$ equal s and $s / 2$ respectively. For example $T_{s}=\left(\begin{array}{ll}0 & 0 \\ s & 0\end{array}\right)$. We can show $\left\|T_{s}\right\|$ $=s,\left\|T_{s}\right\|_{N}=s / 2$ and $r\left(T_{s}\right)=0$ by simple calculations. Then by Theorem 4 we know

$$
T \in \begin{cases}\frac{\mathcal{C}_{2 s^{2}+s}}{s^{2}+s+1} & \text { if } 0 \leqq s \leqq 1 \\ \mathcal{C}_{\frac{2 s^{2}-s}{s^{2}-s+1}} & \text { if } 1 \leqq s \leqq 2\end{cases}
$$

In [4] it is shown that $T_{s} \in \mathcal{C}_{\frac{2 s}{}}$ if $0 \leqq s \leqq 1$. But by our estimation we get more precisely

$$
T_{s} \in \mathcal{C}_{\frac{2 s^{2}+s}{s^{2}+s+1}} \subset \mathcal{C}_{\frac{2 s}{s+1}} .
$$

However it is known by Durszt [2] that this operator belongs to more narrow class \mathcal{C}_{s}. On the other hand we get the following inequality by Theorem 3

$$
\left\|T_{s}\right\|_{N}=s / 2 \leqq\left\{\begin{array}{cl}
\frac{s}{2-s} & \text { if } 0 \leqq s \leqq 1 \\
1 & \text { if } 1 \leqq s \leqq 2
\end{array}\right.
$$

Thus we know Theorem 3 and 4 give sharpenings of Theorem C exactly.
5. Theorem 4 indicates a sufficient condition for $T \in C_{\rho}(0 \leqq \rho \leqq 2)$ depending upon $\|T\|$ and $\|T\|_{N}$ together. We can represent the relation among operator norm $\|T\|$, numerical radius $\|T\|_{N}$ and this sufficient condition by a domain $O D E$ or $O A F$ in a triangle $O A B$ in the figure below. The curves $D E$ and $A F$ are given by

$$
\begin{array}{ll}
F_{1}(\rho) \equiv(2-\rho)\|T\|^{2}+2(1-\rho)\|T\|_{N}-\rho=0 & \text { for } 0 \leqq \rho \leqq 1 \\
F_{2}(\rho) \equiv(2-\rho)\|T\|^{2}+2(\rho-1)\|T\|_{N}-\rho=0 & \text { for } 1 \leqq \rho \leqq 2
\end{array}
$$

respectively.
When $\rho \rightarrow 1, F_{1}(\rho)$ and $F_{2}(\rho)$ gradually close to $\|T\|^{2}-1=0$ and the curves $D E$ and $A F$ close to the vertical line $A C$. Moreover $F_{2}(\rho)$ passes $A(1,1)$ for every ρ and when $\rho \rightarrow 2, F_{2}(\rho)$ gradually close to $\|T\|_{N}-1=0$ and the curve $A F$ closes to the horizontal line $A B$. The triangular domains $O A C$ and $O A B$ indicate the necessary and sufficient condition for T to belong to C_{1} and C_{2} respectively. The line $O A$ indicates the degenerated domain which give the necessary and sufficient condition for a normaloid operator T to belong to $C_{\rho}(0 \leqq \rho \leqq 1)$, where the coordinates of D are $\left(\frac{\rho}{2-\rho}, \frac{\rho}{2-\rho}\right)$ by Theorem 4 and Theorem D.

References

[1] C. A. Berger and J. G. Stampfli: Norm relations and skew dilations. Acta Sci. Math., 28, 191-195 (1967).
[2] E. Durszt: On unitary ρ-dilations of operations. Acta Sci. Math. 27, 245250 (1966).
[3] T. Furuta: A generalization of Durszt's theorem on unitary ρ-dilatations. Proc. Japan Acad., 43, 594-598 (1967).
[4] P. R. Halmos: Hilbert Space Problem Book. Van Nostrand, The University Series in Higher Mathematics (1967).
[5] B. Sz-Nagy and C. Foias: On certain classes of power bounded operators in Hilbert space. Acta Sci. Math., 27, 17-25 (1966).

