2. An Extension of Beurling's Theorem. I

By Zenjiro KURAMOCHI Mathematical Institute, Hokkaido University (Comm. by Kinjirô KUNUGI, M.J.A., Jan. 12, 1968)

Let R be a Riemann surface with positive boundary and let $\{R_n\}$ $(n=0, 1, 2, \cdots)$ be its exhaustion with compact relative boundary ∂R_n such that $\partial R_n \cap \partial R_{n+1} = 0$. Let N(z, p) be a positive harmonic function in $R-R_0-p: p \in R-R_0$ such that N(z, p) = 0 on ∂R_0 , N(z, p) has a logarithmic singularity at p and N(z, p) has minimal Dirichlet integral over $R-R_0$, where Dirichlet integral is taken with respect to N(z, p) $+\log |z-p|$ in a neighbourhood of p. We call such N(z, p) and N-Green's function with pole at p. Consider now a sequence of points $\{p_i\}$ of $R-R_0$ having no points of accumulation in $R-R_0+\partial R_0$. Since the functions $N(z, p_i)$ $(i=1, 2, \dots)$ forms, from some i on, a bounded sequence of harmonic functions—thus a normal family. A sequence of these functions, therefore is convergent in every compact part of $R-R_0$ to a positive harmonic function. A sequence $\{p_i\}$ of $R\!-\!R_{\scriptscriptstyle 0}$ having no point of accumulation in $R\!-\!R_{\scriptscriptstyle 0}\!+\!\partial R_{\scriptscriptstyle 0}$, for which the corresponding $\{N(z, p_i)\}$ have the property just mentioned, that is, $\{N(z, p_i)\}$ converges to a harmonic function—will be called fundamental. If two fundamental sequences determine the same limit function N(z, p), we say that they are equivalent. Two fundamental sequences equivalent to a given one determine an ideal boundary point of R. The set of all the ideal boundary points of R will be denoted by B and the set $R-R_0+B$ by $\overline{R}-R_0$. The domain of definition of N(z, p) may now be extended by writing $N(z, p) = \lim_{z \to \infty} N(z, p) =$ $N(z, p_i)$ $(z \in R - R_0, p \in \overline{R} - R_0)$, where $\{p_i\}$ is any fundamental sequence determining p. The function N(z, p) is characteristic of the point p of their corresponding N(z, p) as a function of z. The distance $\delta(p_1, p_2)$ of two points p_1 and p_2 in $\overline{R} - R_0$ is defined as

$$\delta(p_1, p_2) = \sup_{z \in R_1} \left| rac{N(z, p_1)}{1 + N(z, p_1)} - rac{N(z, p_2)}{1 + N(z, p_2)}
ight|.$$

The topology (N-Martin's topology) [1] is induced by this metric.

Let U(z) be a positive superharmonic function in $R-R_0$ such that $D(\min(M, U(z))) < \infty$ for every M and U(z)=0 on ∂R_0 . Let G be a domain [2] in $R-R_0$ and let $_{G}U^{M}(z)$ be a superharmonic function in $R-R_0$ such that $_{G}U^{M}(z) = \min(M, U(z))$ on $G + \partial R_0$ and $_{G}U^{M}(z)$ has minimal Dirichlet integral. Put $_{G}U(z) = \lim_{M \to \infty} _{M} U^{M}(z)$. If for any domain G, $_{G}U(z) \leq U(z)$, U(z) is called a full-superharmonic function

[3] in $R-R_0$. We see N(z, p) is full-superharmonic in $R-R_0$. To every point $p \in \overline{R} - R_0$ an N-Green's function corresponds. B consists of two parts, B_1^N , the set of N-minimal point and the set B_0^N , the set of non N-minimal points, where B_0^N is an F_o set of capacity zero. It is known that $N(z, p): p \in R - R_0 + B_1^N$ has many properties as the function $-\log |z-p|$ in the z-plane, for instance, $N(z, p) = \lim_{V_M(p)} N(z, p)$ $d = M^{2}$ $p), ext{ where } V_{\scriptscriptstyle M}(p) \!=\! E[z \in \! R \!-\! R_{\scriptscriptstyle 0} : N(z, \, p) \!>\! M] ext{ and } M^* \!=\! \sup^{M=M^*} N(z, \, p).$ Let $G_1 \supset G_2$ be domains. Let $\omega(G_2, z, G_1)$ be a continuous function in G_1 such that $\omega(G_2, z, G_1) = 0$ on ∂G_1 , = 1 on G_2 , and $\omega(G_2, z, G_1)$ is harmonic in $G_1 - G_2$ and has M.D.I. (minimal Dirichlet integral) $< \infty$. We call $\omega(G_2, z, G_1)$ C.P. (Capacitary potential) [4] of G_2 relative to G_1 .

Let $\{G_n\}(n=0, 1, 2, \dots)$ be a decreasing sequence of domains in $R-R_0$. Let $\omega_n(z) = \omega(G_n, z, G_0)$, where $\omega_n(z)$ has M.D.I. $< \infty$ for $n \ge n_0$ and n_0 is a certain number. Then $\omega_n(z)$ converges in mean (we denote it by \Rightarrow) to a harmonic function in $G_0 - (\lim G_n)$ denoted by $\omega(\{G_n\}, z, G)$ as $n \rightarrow \infty$. If $\{G_n\}$ tends to the boundary, we call $\omega(\{G_n\}, z, G)$ the C.P. of the ideal boundary determined by $\{G_n\}$. If $G_0 = R - R_0$, we simply denote by $\omega(\{G_n\}, z)$. It is known if $\omega(\{G_n\}, z, G_0) > 0, \sup \omega(\{G_n\}, z, G_0) = 1 [5].$

Let $p \in B_1^N$. Then to cases occur (1) sup $N(z, p) = \infty$ (this is equivalent to $\omega(p, z) = \lim_{n \to \infty} \omega(v_n(p), z) = 0$ and $\stackrel{z \in \bar{R}}{(2)} \sup_{z \in \bar{R}} N(z, p) < \infty$ (this is equivalent to $\omega(p, z) > 0$), where $v_n(p) = E\left[z \in \bar{R} : \delta(z, p) < \frac{1}{n}\right]$. We denote by B_s^N the set of $p \in B$ such that $\omega(p, z) > 0$. Then $B_S^N \subset B_1^N$.

Contact set $\varDelta(p)$ of $p \in B_1^N$. Suppose $p \in R - R_0 + B_1^N$. Then $N(z, p) = \lim_{v_n(p)} N(z, p) = N(z, p)$. Let $\Delta(p)$ be a closed set in R. If $\lim_{n \to \infty \atop d(p) \cap v_n(p)} \widetilde{N}(z, p) (= \lim_{n \to \infty \atop d(p) \cap v_n(p)} N(z, p)) > 0, \text{ we call } \Delta(p) \text{ a contact set}$ of p. Clearly $\lim_{n \to \infty \atop d(p) \cap v_n(p)} N(z, p) \text{ has mass only at } p, \text{ whence}$ $\lim_{A(p)\cap v_n(p)} N(z, p) \stackrel{n=\infty}{=} \alpha N(z, p): \ 1 \ge \alpha \ge 0. \quad \text{If } N(z, p) - {}_{_{CG}} N(z, p) > 0 \ \text{(this}$ is equivalent to that CG is thin at p), we denote by $G \stackrel{\scriptscriptstyle N}{\ni} p$. It is well known $v_n(p) \ni p$ and $V_M(p) \ni p$ [6] for $M < M^* = \sup_{z \in R} N(z, p)$. Lemma 1.1). Suppose $G \ni p$, then $_{CG \cap P}N(z, p) = \lim_{n \to \infty} CG \cap v_n(p) N(z, p)$

= 0.

2). Let $\Delta(p)$ be a contact set of p. Then $(R - \Delta(p)) \stackrel{N}{\not \ni} p$. This means that $\Delta(p)$ is not contained in any thin set at p.

3). Let $\Delta(p)$ be a contact set and suppose $G \stackrel{\scriptscriptstyle N}{\ni} p$. Then $\Delta(p) \cap G$ is also a contact set.

Proof of 1). Case 1. $p \in B_1^N - B_s^N$, i.e. $\omega(p, z) = 0$. Suppose $G \stackrel{N}{\ni} p$

Z. KURAMOCHI

and assume $_{p(CG}N(z, p)) > 0$. Then $_{p(CG}N(z, p))$ has mass only at p, whence $_{p(CG}N(z, p)) = \alpha N(z, p) > 0$, $_{CG}N(z, p) - _{p(CG}N(z, p)) = U(z)$ is also full-superharmonic [7] and $_{CG}U(z) \leq U(z)$. Now $_{CG}N(z, p) = \alpha N(z, p)$ + U(z). Clearly $_{CG}(_{CG}Nz, p)) = _{CG}N(z, p)$. We have

 $_{CG}(_{CG}N(z, p)) = \alpha_{CG}N(z, p) + _{CG}U(z) = \alpha N(z, p) + U(z) = _{CG}N(z, p).$ On the other hand, $_{CG}N(z, p) \leq N(z, p)$ and $_{CG}U(z) \leq U(z)$, whence we have $\alpha N(z, p) = \alpha_{CG}N(z, p)$. This contradicts $G \ni p$. Hence $_{p}(_{CG}N(z, p)) = 0$. Assume $0 < _{p \cap CG}N(z, p) = \lim_{\substack{n = \infty \\ n = \infty \\ CG}} N(z, p) + U'(z) : \beta > 0$, where U'(z) is full-superharmonic. Whence $_{CG}N(z, p) \geq _{p \cap CG}N(z, p) \geq \beta N(z, p)$ and we have $_{p}(_{CG}N(z, p)) \geq \beta N(z, p) > 0$. This contradicts $_{p}(_{CG}N(z, p)) = 0$. Thus $_{p \cap CG}N(z, p) = 0$.

Case 2. $p \in B_s^N \subset B_1^N$. In this case $\omega(p, z) > 0$, $\sup_{z \in R} N(z, p) < \infty$ and we can use $\omega(p, z)$ instead of N(z, p). Assume $\sum_{p \cap CG} \omega(p, z) = \lim_{n \to \infty} \sum_{v_n(p) \cap CG} \omega(p, z) > 0$. For any $\varepsilon > 0$ we can find a number n_0 such that $1 \ge \omega(p, z) \ge 1 - \varepsilon$ in $v_n(p)$ [8] for $n \ge n_0$. We have

 $\omega(CG \cap v_n(p), z) \ge_{CG \cap v_n(p)} \omega(p, z) \ge (1-\varepsilon)\omega(CG \cap v_n(p), z).$ Let $n \to \infty$ and then $\varepsilon \to 0$. Then

 $(_{\scriptscriptstyle CG}\omega(p,z)\geq)_{\scriptscriptstyle CG\cap p}\omega(p,z)=\omega(CG\cap p,z)>0.$

Now $\omega(CG \cap p, z) > 0$ implies $\sup_{z \in R} \omega(CG \cap p, z) = 1$ and $\omega(CG \cap p, z)$ has mass only at p, whence $\omega(CG \cap p, z) = \omega(p, z)$. Hence $_{CG}\omega(p, z) = \omega(p, z)$. This contradicts $G \ni p$. Hence $_{CG \cap p}\omega(p, z) = 0$ and $_{CG \cap p}N(z, p) = 0$.

Proof of 2). By 1) we have $\lim_{n \to \infty} v_n(p) \cap CG} N(z, p) = 0$. Hence CG is not a contact set.

Proof of 3). Also by 1)

 $0 < \lim_{n = \infty} {}_{{}_{d(p) \cap v_n(p)}} N(z, p) \leq \lim_{n = \infty} {}_{{}_{d(p) \cap v_n(p) \cap GG}} N(z, p) + \lim_{n = \infty} {}_{{}_{d(p) \cap v_n(p) \cap G}} N(z, p) = \lim_{{}_{d(p) \cap v_n(p) \cap G}} N(z, p).$

Hence $G \cap \Delta(p)$ is a contact set of p. A sufficient condition for a set Δ to be a contact set of $p \in B_1^N$. By Theorem 6 of the previous paper (C) [9] we have the following

Lemma 2). If there exists a sequence $M_1 < M_2, \dots < M^* = \sup N(z, p)$ such that

$$\lim_{M_i\to M^*}\int\limits_{\partial V_{M_i}(p)\cap d}\frac{\partial}{\partial n}N(z, p)\mathrm{d}s\!>\!0.$$

Then \varDelta is a contact set of p.

In the following we consider contact sets when a Riemann surface is very simple. Let R be a unit circle |z-1| < 1. We suppose *N*-Martin's topology is defined in $R-R_0$. Then we have $B_0^N = 0$ and every point $e^{i\theta}$ is an *N*-minimal boundary point.

Lemma 3.1). Let $F = \sum_{n=0}^{\infty} F_n$ be a closed set in |z-1| < 1 such

that $\{F_n\}$ tends to z=0 as $n \to \infty$ and F_n is a connected component. Let F_n^p be the circular projection of F_n on the positive real axis such that $F_n^p = E[z: r'_n \leq \operatorname{Re} z \leq r_n], r_n = \max_{z \in F_n} |z|$ and $r'_n = \min_{z \in F_n} |z|$. Put $\delta_n = r_n - r'_n$. Then

Condition (A). If $\overline{\lim_{n=\infty}} \frac{\log r_n}{\log \delta_n} > 0$, then F is a contact set of z=0.

Condition (A) means there exists a const. $M < \infty$ and infinitely many numbers n_i such that $\delta_{ni} > r_{ni}^M$.

We can suppose without loss of generality $R_0 = E\left[z:|z-1| < \frac{1}{2}\right]$. Let $\hat{R} - \hat{R}_0$ and \hat{F} be symmetric images of $R - R_0$ and of F with respect to the circle C:|z-1|=1 respectively. Let $\tilde{R} - \tilde{R}_0 = R - R_0 + C + \hat{R} - \hat{R}_0$. Then $\tilde{R} - \tilde{R}_0$ is a ring domain $\frac{1}{2} < |z-1| < 2$. Let N(z, 0) be the *N*-Green's function of $R - R_0$ corresponding to z=0. Then $N(z, 0) = 2 G(z, 0) = -2 \log |z| + V(z)$, where G(z, 0) is the Green's function of $\tilde{R} - \tilde{R}_0$ of z=0 and V(z) is a harmonic function in a neighbourhood in $\tilde{R} - \tilde{R}_0$ of z=0. Let $\{v_n(0)\}$ be a system of neighbourhood of the boundary point z=0 with respect to *N*-Martin's topology and let $v_n^E(0) = E\left[z \in \tilde{R} - \tilde{R}_0: |z| < \frac{1}{n}\right]$. Then systems $\{v_n(0) + \hat{v}_n(0)\}$ and $\{v_n^E(0)\}$ are equivalent, where $\hat{v}_n(0)$ is the symmetric image of $v_n(0)$ with respect to *C*. We show $\lim_{n \to \infty} v_n(0) \cap F} N(z, 0) > 0$ under the condition (A). Now

 $v_n(0) \cap F N(z, 0) = 2 (v_n(0) + \hat{v}_n(0)) \cap (F + \hat{F}) G(z, 0),$

where $(v_n(0)+\hat{v}_n(0))\cap (F+\hat{F})G(z,0)$ is the lower envelope of positive superharmonic functions in $\tilde{R}-\tilde{R}_0$ larger than G(z,0) on

$$(v_n(0)+\hat{v}_n(0))\cap (F+\hat{F}).$$

Let $_{(v_n(0)+\hat{v}_n(0))\cap (F+\hat{F})}U(z)$ and $_{v_n(p)\cap F}U^*(z)$ be lower envelopes of positive superharmonic functions in $\Gamma: |z| < 1$ larger than $-\log |z|$ on $(v_n(0) + \hat{v}_n(0)) \cap (F+\hat{F})$ and larger than $-\log |z|$ on $v_n(0) \cap F$ respectively. Then since V(z) is bounded in a neighbourhood of z=0, we have $\lim_{v_n(0)\cap F}N(z, 0) = \lim 2_{(v_n(p)+\hat{v}_n(p))\cap (F+\hat{F})}G(z, 0)$

$$\lim_{z \to \infty} v_n(0) \cap F^{1}V(z, 0) = \lim_{n \to \infty} \mathcal{Z}_{(v_n(p) + \hat{v}_n(p)) \cap (F + \hat{F})}G(z, 0)$$

$$\geq \lim_{n \to \infty} (v_n(p) + \hat{v}_n(p)) \cap (F + \hat{F})} U^*(z) \geq \overline{\lim}_{n \to \infty} v_n(0) \cap F} U^*(z)$$

$$= \lim_{n \to \infty} v_n^E(p) \cap F} U(z) \geq \overline{\lim}_{n \to \infty} F_n U^*(z) \geq \overline{\lim}_{n \to \infty} U_n(z),$$

where $_{F_n}U^*(z)$ and $U_n(z)$ are lower envelopes of positive superharmonic function in |z| < 1 larger than $-\log |z|$ on F_n and larger than $-\log r_n$ on F_n respectively (because $-\log |z| \ge -\log r_n$ on F_n).

We estimate the module of a ring domain $(\Gamma - F_n)$. Let p and q be two points such that $p = r'_n e^{i\theta}$, $q = r_n e^{i\varphi}$, where $r_n = \max_{z \in F_n} |z|$ and

No. 1]

 $r'_n = \min_{x \in F} |z|$. Then F_n contains at least a curve γ connecting p with q. Then by $F_n \supset \gamma$, module of $(\Gamma - F_n)$ is smaller than that of $(\Gamma - \gamma)$. Map $\Gamma - \gamma$ by

$$w = \frac{1 - r'_n e^{-i\theta} z}{z - r'_n e^{i\theta}}.$$

Then $\Gamma - \gamma$ is mapped onto a ring whose boundary consists of |w| = 1and a curve γ_w connecting $w = \infty$ with $w = \frac{1 - r_n r'_n e^{-i\theta + i\varphi}}{r_n e^{i\varphi} - r'_n e^{-i\theta}}$. Now $\left|\frac{1 - r_n r'_n e^{-i\theta + i\varphi}}{r_n e^{i\varphi} - r'_n e^{i\theta}}\right| \leq \frac{2}{r_n - r'_n}$. Let Ω be a Koebe's extremal ring domain such that $\partial \Omega$ consists of |w| = 1 and a half straight line on the real axis connecting $w = \infty$ with $w = \frac{2}{r_n - r'_n} > 1$. Then the module of $(\Gamma - \gamma)$ is smaller than that of $\Omega \leq \log \frac{4 \times 2}{r_n - r'_n}$. $U_n(z)$ is a harmonic function in $\Gamma - \gamma$ such that $U_n(z) = 0$ on $\partial \Gamma$ and $U_n(z) = -\log r_n$ on γ , whence

$$\int_{\partial \Gamma} \frac{\partial}{\partial n} U_n(z) \mathrm{ds} \ge \frac{2\pi (-\log r_n)}{\mathrm{mod. of } (\Gamma - \gamma)} \ge \frac{-2\pi \log r_n}{\log \frac{8}{r_n - r'_n}} \ge \frac{2\pi \log r_n}{\log \delta_n} > 0.$$

Hence $\lim_{n \to \infty} v_n(p) \cap F N(z, p) \ge \overline{\lim_{n \to \infty} U_n(z)} > 0$ and F is a contact set of z=0. As an application of Lemma 3), 1) we have at once the following

Lemma 3. 2). Let R be a Riemann surface such that |z| < 1. Let γ be a curve terminating at $e^{i\theta}$. Then γ is a contact set of $e^{i\theta}$. Since $N(z, 0) + 2 \log |z|$ is harmonic in a neighbourhood of z = 0

in $\tilde{R} - \tilde{R}_0$ and by Lemma 2 we have at once

Lemma 3. 3). Let R be the same Riemann surface as Lemma 3).1. Let $F = \sum_{n} F_{n}$ be a closed set in R such that $\{F_{n}\}$ tends to z=0 as $n \to \infty$ and every F_{n} contains a circular arc: $E[z: |z|=r_{n}, \theta_{n} \leq \arg z \leq \theta_{n} + \delta_{n}]$. Then

Condition (B). If $\overline{\lim} \delta_n > 0$, F is a contact set of z=0.

Let R be |z-1| < 1. Then we see F is thin at z=0 (this is equivalent to $R-F \stackrel{\sim}{\ni}$ the point z=0), if and only if z=0 is regular for the Dirichlet problem in a domain $\Gamma-F-\hat{F}$, where $\Gamma = E\left[z:\frac{1}{2} < |z-1| < 2\right]$ and \hat{F} is the symmetric image of F with respect to |z-1|=1. Hence by Lemma 2 we have

Theorem 1. Conditions (A) and (B) are sufficient conditions for z=0 to be regular for the Dirichlet problem in $\Gamma - F - \hat{F}$.

Let $G_1 \supset G_2$ be two domains. If there exists a C_1 -function U(z)in G_1 [10] such that U(z)=0 on ∂G_1 , U(z)=1 on G_2 and the Dirichlet integral $D(U(z)) < \infty$, we say CG_1 and G_2 are Dirichlet-disjoint. Let $\omega(\{G_n\}, z, G_0)$ be C.P. of the boundary determined by $\{G_n\}$. Then we proved

Lemma 4. 1). [11] Let $\omega(\{G_n\}, z, G_0) > 0$. Then there exists a level curve C_r of $\omega(\{G_n\}, z, G_0)$ such that

$$\int_{C_r} \frac{\partial}{\partial n} \omega(\{G_n\}, z, G_0) \mathrm{ds} = D(\omega(\{G_n\}, z, G_0))$$

for almost $r: 0 \leq r \leq 1$.

No. 1]

2).
$$[12]$$
 If G_{n+i} and CG_n are Dirichlet-disjoint, for any G_n
$$\int_{C_r \cap CG_n} \frac{\partial}{\partial n} \omega(\{G_n\}, z, G_0) ds \downarrow 0 \text{ as } r \uparrow 1.$$

3). If CG_0 and G_{n0} $(n_0$ is a certain number) are Dirichlet-disjoint, we have by the Dirichlet principle and by maximum principle $\omega(\{G_n\}, z, G_0) > 0$ if and only if $\omega(\{G_n\}, z)(=\omega(\{G_n\}, z, R-R_0)) > 0$.

References

- [1] Z. Kuramochi: Potentials on Riemann surfaces. Jour. Fac. Sci. Hokkaido Univ., XVI (1962).
- [2] In the present articles we suppose ∂G consist of enumerably infinite number of components clustering nowhere in R.
- [3] See [1] But in 1) full-superharmoic functions called superharmonic functions.
- [4] See [1].
- [5] See [1].
- [6] Z. Kuramochi: Singular points of Riemann surfaces. Jour. Fac. Sci. Hokkaido Univ., XVI (1962).
- [7] See Theorem 6 of [1].
- [8] See [6].
- [9] C means the paper "Correspondence of Boundaries of Riemann surfaces. Jour. Fac. Sci. Hokkaido Univ., XVII (1963).
- [10] If g(z) is continuous and partially defierentiable almost everywhere, g(z) is called a C_1 -function.
- [11] See Lemma 1 of C (See [9]).
- [12] See [11].

9