36. On an Analytic Index-formula for Elliptic Operators

By Daisuke Fujiwara
Department of Mathematics, University of Tokyo
(Comm. by Kunihiko Kodaira, m. J. a., March 12, 1968)

§ 1. Preliminaries. In his work [1], [3], M. F. Atiyah indicated an analytic formula for the index of elliptic differential operators on compact manifolds. The aim of this note is to describe this formula more explicitly.

Assume that both X and Y are differentiable vector bundles with fibre C^{l} over a compact oriented Riemannian manifold M without boundary and that they are provided with hermitian metric in each fibre. Let P be an elliptic differential operator of order m from $\mathcal{E}(X)$ to $\mathcal{E}(Y)$, where $\mathcal{E}(X)$ is the space of C^{∞} sections of X provided with the usual topology. We denote by $L^{2}(X)$ the space of L^{2} sections of X. Then, considered as a densely defined linear operator from $L^{2}(X)$ to $L^{2}(Y), P$ is closable. We denote its minimal closed extension by the same symbol P. Since P is a densely defined closed operator, there is its adjoint P^{*} which is a densely defined closed operator from $L^{2}(Y)$ to $L^{2}(X)$. It is well known that P has a finite index Ind (P).
§ 2. Results. Our first result is the following:
Theorem 1. Let λ be a positive number. Then we have the formula
(1) Ind $(P)=\lim _{\lambda \rightarrow \infty} \lambda\left[\operatorname{Trace}\left(\lambda+\left(P^{*} P\right)^{k}\right)^{-1}-\right.$ Trace $\left(\lambda+\left(P P^{*}\right)^{k-1}\right]$
where k is an arbitrary integer which is larger than $\frac{n}{2 m}$.
Proof. The following proof is a variant of the discussion used in M. F. Atiyah and R. Bott [3].

Let $\Lambda=\left\{0, \lambda_{1}, \lambda_{2}, \cdots\right\}$ be the set of eigen values of $P P^{*}$ or $P^{*} P$ with $0<\lambda_{1}<\lambda_{2}<\cdots$. Let $\Gamma_{j}(X)$ and $\Gamma_{j}(Y)$ be, respectively, the eigen-spaces of $P^{*} P$ and $P P^{*}$ corresponding to λ_{j}. It is well known that $\Gamma_{j}(X), \Gamma_{j}(Y)$ are of finite dimension. Let P_{j} denote the restriction of P to $\Gamma_{j}(X)$. Then we have the following complexes:

$$
0 \longrightarrow \Gamma_{j}(X) \xrightarrow{P_{j}} \Gamma_{j}(Y) \longrightarrow 0, \quad j=0,1,2,3, \cdots .
$$

Obviously,

$$
\begin{aligned}
\text { Ind }(P) & =\operatorname{dim} \Gamma_{0}(X)-\operatorname{dim} \Gamma_{0}(Y), \\
0 & =\operatorname{dim} \operatorname{ker} P_{j}-\operatorname{dim} \text { coker } P_{j},
\end{aligned}
$$

$$
\text { because }\left.P^{*} P\right|_{r_{j}(X)}=\lambda_{j},\left.P P^{*}\right|_{r_{j}(Y)}=\lambda_{j} \text {. Hence }
$$

$$
\begin{aligned}
\operatorname{Ind}(P) & =\sum_{j} \frac{\lambda}{\lambda+\lambda_{j}^{k}}\left(\operatorname{dim} \Gamma_{j}(X)-\operatorname{dim} \Gamma_{j}(Y)\right) \\
& =\lambda\left[\operatorname{Trace}\left(\lambda+\left(P^{*} P\right)^{k}\right)^{-1}-\operatorname{Trace}\left(\lambda+\left(P P^{*}\right)^{k}\right)^{-1}\right] .
\end{aligned}
$$

Since the right side is independent of λ, tending λ to infinity, we obtain the formula (1).

Now the asymptotic behaviour of Trace $\left(\lambda+\left(P^{*} P\right)^{k}\right)^{-1}$ and Trace $\left(\lambda+\left(P P^{*}\right)^{k}\right)^{-1}$ are known. See author's previous papers [4] and [5].

Let U be a coordinate patch of M where the bundles X and Y are trivial. We denote by $\left(x_{1}, x_{2}, \cdots, x_{n}\right)=x$ the coordinate of a point in U. Consider the $l \times l$ matrix valued function $a(x ; \xi, \sigma)$ of x in U and of (ξ, σ) in $\boldsymbol{R}^{n+1}-\{0\}$ defined by

$$
a(x ; \xi, \sigma)=\sigma^{2 m k} I+e^{-i x \cdot \xi}\left(P^{*} P\right)^{k}\left(e^{i x \cdot \xi}\right)
$$

Next determine the formal series $b(x ; \xi, \sigma)=\sum_{j=0}^{\infty} b_{-2 m k-j}(x ; \xi, \sigma)$ of $l \times l$ matrix valued functions $b_{-2 m k-j}$ homogeneous of degree $-2 m k-j$ in ξ and σ by the generalized Leibniz formula

$$
\begin{equation*}
\sum_{|\alpha| \leq 2 m k} \frac{1}{\alpha!} D_{\xi}^{\alpha} \alpha(x ; \xi, \sigma) D_{x}^{\alpha} b(x ; \xi, \sigma)=I \tag{2}
\end{equation*}
$$

where I is the identity matrix. Then we have the asymptotic formula

$$
\begin{aligned}
& \text { Trace }\left(\sigma^{2 m k}+\left(P^{*} P\right)^{k}\right)^{-1} \\
& \qquad \sim \sum_{j=0} \sigma^{-2 m k+n-j}(2 \pi)^{-n} \int_{M} \frac{d \mu(x)}{\rho(x)} \int_{R^{n}} \operatorname{trace} b_{-2 m k-j}(x ; \xi, 1) d \xi
\end{aligned}
$$

Therefore the formula (1) gives the following equalities:

$$
\begin{align*}
& \int_{M} \frac{d \mu(x)}{\rho(x)} \int_{R^{n}} \operatorname{trace} b_{-2 m k-j}(x ; \xi, 1) d \xi \\
& \quad=\int_{M} \frac{d \mu(x)}{\rho(x)} \int_{R^{n}} \operatorname{trace} b_{-2 m k-n}^{\prime}(x ; \xi, 1) d \xi \tag{3}
\end{align*}
$$

$$
\text { for } j=0,1,2, \cdots, n-1
$$

and

$$
\begin{align*}
& \text { Ind }(P)=A(k)-A^{\prime}(k), \\
& A(k)=(2 \pi)^{-n} \int_{M} \frac{d \mu(x)}{\rho(x)} \int_{R^{n}} \operatorname{trace} b_{-2 m k-n}(x ; \xi, 1) d \xi \tag{4}\\
& A^{\prime}(k)=(2 \pi)^{-n} \int_{M} \frac{d \mu(x)}{\rho(x)} \int_{R^{n}} \operatorname{trace} b_{-2 m k-n}^{\prime}(x ; \xi, 1) d \xi
\end{align*}
$$

where b_{j}^{\prime} are the functions formed from $P P^{*}$ in just the same process as b_{j} are formed from $P^{*} P$ and $\rho(x)$ is the density of the volume element $d \mu(x)$ on M.

It is possible to simplify the formula (4) further.
Theorem 2. Formula (4) holds for $k=1$.
Proof. Set $\square=\left(P^{*} P+1\right)^{k_{0}}$ with a sufficiently large fixed k_{0}. From the operator calculas we have, for $\lambda>2$ and $\operatorname{Re} s>0$,

$$
\begin{equation*}
\left(\lambda^{2 m k_{0} s}+\square^{s}\right)^{-1}=\frac{1}{2 \pi i} \int_{\Gamma} \frac{1}{\zeta^{s}+\lambda^{2 m k_{0} s}}(\zeta-\square)^{-1} d \zeta \tag{5}
\end{equation*}
$$

where Γ is the complex contour from $-\infty i$ to ∞i along the imaginary axis and the branch of ζ^{s} is so taken that $1^{s}=1$. Thus, using the coordinate expression of X and Y, we have the following asymptotic expansion in (ξ, λ) as $|\xi|+|\lambda| \rightarrow \infty$. For any smooth function φ with compact support in U and for any constant vector v and real linear function $x \cdot \xi=x_{1} \xi_{1}+\cdots+x_{n} \xi_{n}$ of coordinate function x_{1}, \cdots, x_{n},

$$
\begin{align*}
e^{-i x \cdot \xi}\left(\lambda^{2 m k_{0} s}+\square^{s}\right)^{-1} \varphi e^{i x \cdot \xi} \boldsymbol{v} & =\frac{1}{2 \pi i} \int_{\Gamma} \frac{e^{-i x \cdot \xi}}{\lambda^{2 m k_{0} s}+\zeta^{s}}(\zeta-\square)^{-1}\left(e^{i x \cdot \xi} \varphi \boldsymbol{v}\right) d \zeta \\
& \sim \frac{1}{2 \pi i} \sum_{j} \int_{\Gamma} \frac{1}{\lambda^{2 m k_{0} s}+\zeta^{s}} b_{-2 m k_{0}-j}\left(x ; \xi, \zeta^{\frac{1}{2 m k_{0}}}\right) \boldsymbol{v} d \zeta . \tag{6}
\end{align*}
$$

Since $\int_{\Gamma} \frac{1}{\lambda^{2 m k_{0} s}+\zeta^{s}} b_{-2 m k_{0}-j}\left(x ; \xi, \zeta^{\frac{1}{2 m k_{0}}}\right)$ is positively homogeneous in (ξ, λ) of degree $-2 m k_{0} s-j$, Trace $\left(\lambda^{2 m k_{0} s}+\square^{s}\right)^{-1}$ has an asymptotic expansion in λ, that is,

Trace $\left(\lambda^{2 m k_{0} s}+\square^{s}\right)^{-1}$

$$
\sim \sum_{j} \frac{1}{2 \pi i} \int_{M} \frac{d \mu(x)}{\rho(x)} \int_{R^{n}} d \xi \int_{\Gamma} \frac{1}{\lambda^{2 m k_{0} s}+\zeta^{s}} \operatorname{trace} b_{-2 m k_{0}-j}\left(x ; \xi, \frac{1}{2 m k_{0}}\right) d \zeta
$$

(see [4] or [5]).
Therefore, if s is large enough,

$$
\begin{equation*}
A\left(k_{0} s\right)=\frac{\lambda^{2 m s k_{0}}}{2 \pi i} \int_{M} \frac{d \mu(x)}{\rho(x)} \int_{R^{n}} d \xi \int_{\Gamma} \frac{1}{\zeta^{s}+\lambda^{2 m k_{0} s}} \operatorname{trace} b_{-2 m k_{0}-n}\left(x ; \xi, \zeta^{\left.\frac{1}{2^{2 m k_{0}}}\right) d \zeta . ~ . ~}\right. \tag{7}
\end{equation*}
$$

This is analytic in $s, \operatorname{Re} s>0$, and

$$
\begin{equation*}
A(1)=\frac{\lambda^{2 m}}{2 \pi i} \int_{M} \frac{d \mu(x)}{\rho(x)} \int_{R^{n}} d \xi \int_{\Gamma} \frac{1}{\lambda^{2 m}+\zeta^{\frac{1}{k_{1}}}} \text { trace } b_{-2 m k_{0}-n}\left(x ; \xi, \zeta^{\frac{1}{2 m k_{0}}}\right) d \zeta . \tag{8}
\end{equation*}
$$

On the other hand, (6) implies that the n-th term of the expansion of $e^{-i x \cdot \xi}\left(\lambda^{2 m}+P^{*} P\right)^{-1} \varphi e^{i x \cdot \xi} v$ is equal to

$$
\frac{1}{2 \pi i} \int_{\Gamma} \frac{1}{\lambda^{2 m}+\zeta^{\frac{1}{k_{0}}}} b_{-2 m k_{0}-n}\left(x ; \xi, \zeta^{\frac{1}{2 m k_{0}}}\right) d \zeta .
$$

Thus this is equal to the n-th term calculated from the generalized Leibniz rule (2) where k is replaced by 1 . This and (8) prove Theorem 2.

As a corollary to the formula (4) we shall give an analytic proof of

Theorem 3. ([2]). Ind $(P)=0$, if the dimension of M is odd.
Proof. From the generalized Leibniz rule (2), the function $b_{-n-2 m}$ is odd in ξ. Therefore the integral

$$
\int_{R^{n}} b_{-2 m-n}(x ; \xi, 1) d \xi
$$

vanishes.

References

[1] Atiyah, M. F.: Global aspects of the theory of elliptic differential operators. Abstract of reports, Congress at Moscow, 7-14 (1966).
[2] Atiyah, M. F., and Singer, I. M.: The index of elliptic operators on compact manifolds. Bull. Amer. Math. Soc., 72, 422-433 (1963).
[3] Atiyah, M. F., and Bott, R.: A Lefschetz fixed point formula for elliptic complexes. I. Ann. Math., 68, 374-407 (1967).
[4] Fujiwara, D.: The Asymptotic formula for the trace of the green operators of elliptic operators on compact manifolds. Proc. Japan Acad., 43, 426-427 (1967).
[5] -: On the asymptotic formula for the Green operators of elliptic operators on compact manifolds. J. Fac. Sci. Univ. Tokyo, 14, 251-284 (1967).

