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Introduction. In his recent book 1, P. A. Meyer mentioned
a remark on the mapping of a set of processes into itself stated
below, which enables one to apply the theory of potentials to that
of martingales"

Let (2, F, P) be a probability space, and {F,eN+ be an increasing
family of sub-a-fields of F, where N+ {1, 2, 3, }. Put S- 2 N+,
the product space, and attach to it the a-field consisting of the

sets of the form JA {n}, where A e F. Then any real-valued

-measurable function may be identified with a process adapted to
{F}N+. If we denote by the family of the sets of the form

(J A {n}, where A e F and P(A)-0, then / is closed under

countable union. We can define the mapping N of a certain class
of processes into itself in the following manner:

(NX)--E(X+ F).
N determines the process with the ambiguity of the values on the
sets belonging to .

In this paper, we define a kernel which is a generalization of
the usual kernel, establish the potential theory associated with the
kernel, and deduce some theorems on martingales, though mostly
already known, using above notions and the method suggested in
Doob’s paper 2., 1. Sub,Markov pseudo kernels and potential theory. Let
S be an abstract space and be a a-field of subsets of S. Let
be a subfamily of closed under the operation of countable union.
We denote by 0 the set of all -measurable functions on S with
values in 0, +c., and define the equivalence relation in 0 as
follows:

f,.g if and only if f(s)-g(s) on S-A for some A e .
We classify 0 by this equivalence relation and set --/.

Then we can naturally define the usual algebraic operations and limit
processes in from the corresponding operations in 0; this may be
done by the same way as we do for function spaces on a measure
space in case / is the totality of sets of measure zero.
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Thus, in the sequel, we identify the element of 0 and the
corresponding class in . We also do the same identification for the
elements of if, considering their indicator functions.

Definition 1. A map N of into is called a sub-Markov
pseudo kernel, or simply a kernel, if the following (1) and (2) are
satisfied:

(1) N .f -, . Nf for any f e and any non-negative
i--1

constant ;
(2) NI=<I, where 1 denotes the constant function with the

value one.
Definition 2. f e is said to be excessive (resp. invariant)

with respect to N if f< 4-c and Nf<=f (resp. Nf=f). If we omit
the condition f< + c, f is said to be excessive in the wider sense.

Definition :. The map G-N (where N-I, identity) is
-0

called the potential kernel associated with N. For any f e , Gf
is called the potential of f.

Theorem 1. The potential Gf of fe is excessive in the
wider sense. If f is excessive and also if N’*f=O, then f is the
potential of h-f-Nfe .

The proof is easy.
Theorem 2. If f e is excessive, then f has the unique Riesz

decomposition of the form f=g+h, where g is invariant and h is
excessive with N*h-O. This h can be written as a potential of
some element of .

To prove this it is sufficient to take g=N’*f and h-f-N*f.
Theorem :. Put A {s; f(s) > 0} for a given f e . Then for

any non-negative constant a and any g e which is excessive in
the wider sense,

a+g>=Gf on A
implies

a+ g >__ Gf everywhere on S.
The proof is the same as in Meyer [1.
Combining the above theorem with Theorem 1, we have the

following corollary.
Corollary 1. Suppose f, g e, be excessive and Nof=O. If

we put A- {s; f(s) > (Nf)(s)}, then
a+g>=f on A

implies
a+g>__f everywhere on S, where a is a non-negative constant.
Definition 4. For A c we define a kernel I to be the multi-

plication of the indicator function of A. We set N=N.I and
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H I/I,. (, (N,)}. N, where A’ s the complementary set of A.
\p=O /

Theorem 4. Let f e be excessive, and A e . Then f Hff
is he smalles of all elements of which are ecessive and
dominate f on he se A.

The proof is the same as in Meyer 1.
Theorem . Le a,b be wo consan numbers such ha

Oa<b, and pu A={s; f(s,)a} and B-{s; f(s)b} for excessive
f e . Then we have he followig three inequalities:

(i) I<

(2) 1,+ 1,.+ 1.,, +... min If, b],
b-a

(3) 1, +1,+1.., +... rain f, aJ,
b-a

where 1 is the constant function with valuse one and 1 should be
understood in the same way as f in the preceeding theorem and
1 (1) and so on.

The proof is the same as in Doob 2.
2. Applications to the martingale theory. As one can easily

see, the quartet {S, , , N} defined in the introduction is an ex-
ample of that defined in 1 if we take for 0 the set of all non-
negative processes adapted to {F.+. In this section we restrict
ourselves to this example and all processes are supposed to be non-
negative-valued. The theorems in this section correspond to those
in 1 with the same numbers.

Lemma 1. Xe is excessive (resp. invariant) if and only
if it is a supermartingale (resp. martingale) taking finite values
P-a.s. when it is considered as a process. The condition taking
finite values is omitted if we replace excessive (resp. invariant) by
excessive in the wider sense (resp. invariant in the wider sense).

Theorem 1. Let {X.}.+ be a finite valued supermartingale
such that lira E(X F)-0 for any n N+, then there exists a non-

negative process Y.} such that X.- E(Y,+ ]F) for any n N+.
0

To prove this we have only to take Y-X-E(X+ ]F).
Theorem 2. If {X.} is a finite-valued supermavtingale, then

{X.} has the unique Riesz decomposition of the form X-Y.+Z,
where {Y.} is a martingale and {Z.} is a supermartingale such
that lim E(Z F.)-0 for every n N+.

This may be shown by putting Y lira E(X]F) and Z X- Y.
Theorem 3. Let {X.} be a non-negative process and a be a

non-negative constant, put A-{w; X.(w)>0}, and suppose {Y} to
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be a supermartingale (not necessarily finite-valued). Then

a+ Y >= , E(X+ F) a.s. on A for every n e N+
-’0

implies

a+ Y=, E(X+ F) a.s. on 9 for every n e N+.
For this translation, it is enough to take A {n} for A in

Theorem 3 of 1.
Corollary 1. Suppose {X}, {Y} be two supermartingales, {X}

being finite-vatued and lim E(X F)-0 for any n e N+. If we put

A-{; XE(X+ F)}. Then, for any non-negative constant a,
a+YX a.s. on A for every n e N+

implies
a+YX a.s. on 9 for every n e N+.

Theorem 4. Let {X.} be a supermartingale and {A} be a
family of sets such that A e F for every n. Then the class of
supermartingales {Z.} such that Z dominates X on A, for every
n has the smallest element {X} of the form

X-E L’X F a.s.

where I is the indicator function of A and I is the indicator

function of A for m> n.

=I.x+ E(I.X F)

=E(:I:..X, IF.), q.e.d.

Lemma 2. Let {X} be a supermartingale. Given Oab, we
put A: {w; X,(w) a}, B- {w; X:(w) b}. Then

(1) lf- P({w; X b for some m n} F:) a.s.
(2) 1 +1 +1 + E(D F) a.s.
(3) 1 +1TM+1 + E(U F:) a.s.

where D and U are respectively downcrossing and upcrossing
numbers of the interval [a, b] after the time n, and 1 is the con-
stant process with the value one, which is a martingale, and 1

A Bis defined as in Theorem 4 and 1=(1 ) and so on.
Proof. Using Theorem 4 repeatedly we have, for example,

l-P({w; X(w) downcrosses [a, b] at least once after n} IF:).
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By means of the relations of such type, this lemma can be proved
easily.

Theorem 5. Let {X} be a supermartingale. Then using the
same notation as in the preceding lemma, we have the following
three inequalities,

(1) P({w; X(w)> b for some >n} F)< X a.s.
b

(2) E(D IF)<= min [X, b a,s.
b-a

(3) E(UIF)<= min [X, a a.s.
b-a

(1) reminds one of the well-known Kolmogorov’s inequality and (2)
(3) are modifications of the Doob’s inequalities.

These may be seen by combining Theorem 5 in ,1 with the
preceding lemma.
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