59. A Remark on Baire's Theorem in Ranked Spaces

By Yukio YOSHIDA Osaka University

(Comm. by Kinjirô KUNUGI, M. J. A., April 12, 1968)

The Baire's theorem in ranked spaces was studied by Prof. K. Kunugi in 1954. He showed then that in a topological space which is at the same time a complete ranked space the Baire's theorem holds ([1] p. 556). To be exact;

Theorem. If a topological space E is a complete ranked space with indicator θ , then, for any well-ordered sequence

 $G_0, G_1, \cdots, G_{\alpha}, \cdots; 0 \leq \alpha < \theta$

of open¹⁾ and everywhere dense¹⁾ subsets in E, $\bigcap_{\alpha} G_{\alpha}$ is also everywhere dense¹⁾ in E.

This theorem is a generalization of Baire's theorem which states that every complete metric space, or every locally compact regular space is a Baire space ([1] p. 912).

In this note we shall show the existence of a complete ranked space in which Baire's theorem does not hold.

One of such spaces is the space \mathcal{D} , defined by L. Schwartz, consisting of all infinitely differentiable function φ with compact carrier ([3], [4] p. 587). We shall treat the case in which φ is of one variable, and use the same notation as that in the note [4].

First, we shall show the completeness of the ranked space \mathcal{D} . Let $\{\varphi_{\nu} + v(n_{\nu}, K_{\nu}; 0)\}_{\nu=0,1,2,...}$ be a fundamental sequence of neighbourhoods in \mathcal{D} ([6] p. 251). Then we have:

(i) $K_0 \ge K_1 \ge K_2 \ge \cdots \ge K_{\nu} \ge \cdots;$

(ii) car. $\varphi_{\nu+1} \subseteq \text{car. } \varphi_{\nu} \cup [-K_{\nu}, K_{\nu}];$

(iii) for each fixed non-negative integer n, $\{\varphi^{(n)}(x)\}_{\nu=0,1,2,...^{2}}$ converges uniformely to a continuous function $\varphi_n(x)$ on $(-\infty, \infty)$.

Therefore, there is a function φ in \mathcal{D} of which $\varphi^{(n)}(x) = \varphi_n(x)$ $(n=0, 1, 2, \cdots)$. It is easily seen that

$$\varphi \in \cap (\varphi_{\nu} + v(n_{\nu}, K_{\nu}; 0)).$$

Hence, \mathcal{D} is complete.

Next, for any non-negative integer K, let \mathcal{D}_{κ} be the totality of φ in \mathcal{D} of which the carrier is contained in interval [-K, K], and \mathcal{C}_{κ} be the compliment of \mathcal{D}_{κ} in \mathcal{D} . Then \mathcal{D}_{κ} is *r*-closed ([5] p. 69) and

¹⁾ In the topological sense.

²⁾ $\varphi^{(n)}$ denotes the *n*-th derivative of φ , and $\varphi^{(0)}$ means φ .

 \mathcal{C}_{κ} is r-open.³⁾ And cl $(\mathcal{C}_{\kappa}) = \mathcal{D}$, i.e. \mathcal{D}_{κ} is nowhere dense. Therefore $\mathcal{D} = \bigcup_{\kappa} \mathcal{D}_{\kappa}$, \mathcal{D} is of the 1st category.

References

- K. Kunugi: Sur les espaces complets et régulièrement complets. I, II. Proc. Japan Acad., 30, 553-556, 912-916 (1954).
- [2] —: Sur la méthode des espaces rangés. I, II. Proc. Japan Acad., 42, 318-322, 549-554 (1966).
- [3] L. Schwartz: Théorie des distributions. Act. Sci. Ind., Nr. 1091, 1092 (1950-1951).
- [4] M. Washihara: On ranked spaces and linearity. Proc. Japan Acad., 43, 584-589 (1967).
- [5] Y. Yoshida: Compactness in ranked spaces. Proc. Japan Acad., 44, 69-72 (1968).
- [6] —: Compactness and completeness in ranked spaces. Proc. Japan Acad., 44, 251–254 (1968).

256