73. Stetige Konvergenz und der Satz von Ascoli und Arzelà. VI

Von Harry POPPE Sektion Mathematik, Ernst-Moritz Arndt Universität, D. D. R. (Comm. by Kinjirô Kunugi, M. J. A., May 13, 1968)

Wir ziehen zum Schluss noch einige Folgerungen aus (6) Y,Z seien L-Räume, Z erfülle das Axiom L III und sei Hausdorffsch (Axiom LT_2). Dann sind die folgenden Aussagen äquivalent:

- (I) Es sei lim eine Limesabbildung für C(Y, Z), die größer als die Limesabbildung p-lim der punktweisen Konvergenz ist (d.h. aus der Konvergenz bezüglich lim folgt die Konvergenz bezüglich p-lim). Es sei $(C(Y, Z), \lim)$ ein L-Raum. Ist dann $H \subset C(Y, Z)$ bezüglich lim kompakt, so folgt, daß H gleichstetig ist.
- (II) Für jeden L-Raum X mit der Eigenschaft, daß jeder konvergente Ultrafilter in X eine kompakte Menge enthält, gilt: Ist $\tilde{f} \in C(X, (C(Y, Z), \lim))$, so folgt $f = h^{-1}(\tilde{f}) \in C(X \times Y, Z)$. (Es ist $f(x, y) = \tilde{f}(x)(y)$). Die Aussage (6) gilt insbesondere, wenn Y ein beliebiger topologischer Raum, Z ein Hausdorffscher topologischer Raum und lim die einer Topologie τ für C(Y, Z) (mit $\tau \supset \tau_p$, τ_p die Topologie der punktweisen Konvergenz) unterliegende Topologie ist.

Für τ_c erhält man:

- (12) Y sei ein beliebiger, Z ein Hausdorffscher topologischer Raum. Dann sind die Aussagen äquivalent:
- (I) Jede bezüglich τ_c kompakte Menge $H \subset C(Y, \mathbb{Z})$ ist gleichstetig (evenly continuous).
- (II) Für jeden topologischen Raum X mit der Eigenschaft, daß jeder konvergente Ultrafilter eine kompakte Menge von X enthält, gilt: $h(C(X\times Y,Z))=C(X,(C(Y,Z),\tau_c))$. Ist $H\subset C(Y,Z)$ τ_c -kompakt, so folgt (a): H ist abgeschlossen in C(Y,Z) bezüglich τ_c , (b): $\overline{H(y)}$ ist kompakt für jedes $y\in Y$. Ist nun Z zusätzlich regulär und gelten für $H\subset C(Y,Z)$ die Bedingungen (a), (b), und (c): H ist gleichstetig, so folgt aus Satz (11), (III), 1., β), daß H kompakt bezüglich τ_c ist. Ferner erfüllt jeder kompakte Raum X die in (II) genannte Bedingung: (+) Jeder konvergente Ultrafilter in X enthält eine kompakte Menge. Folglich erhält man als Spezialfall den Satz (5) von Noble.

Aus (12) und aus (11), (III), 2. erhalten wir

(13) X, Y, Z seien topologische Räume, X genüge der Bedingung (*), Y sei ein Hausdorffscher k-Raum und Z sei Hausdorffsch. Dann

gilt (*) $h(C(X \times Y), Z) = C(X, C(Y, Z), \tau_c)$.

Bemerkung: Offenbar erfüllt jeder lokalkompakte Raum X die Bedingung (*). Wir vermuten, daß die Bedingung (*) allgemeiner ist; jedoch ist es uns noch nicht gelungen, ein Beispiel eines, insbesondere Hausdorffschen und regulären Raumes anzugeben, der nicht lokalkompakt ist, aber (*) erfüllt. Für Hausdorffsche lokalkompakte X ist (13) ein Ergebnis von Morita (man vergleiche [3], Korrolar 1.9; [3] enthält Untersuchungen über die Gültigkeit von (*); diese Ergebnisse werden in [7] weitergeführt und verallgemeinert).

Wir übertragen nun noch den bekannten Satz: "Das kartesische Produkt eines Hausdorffschen lokalkompakten Raumes mit einem Hausdorffschen k-Raum ist ein Hausdorffscher k-Raum" (siehe etwa [2] oder [4]) auf Räume, die (*) genügen. Wir übertragen dabei den Beweis in [2].

(14) X und Y seien Hausdorffsche Räume, X genüge der Bedingung (*) und Y sei ein k-Raum. Dann ist auch $X \times Y$ ein k-Raum.

Beweis: Es sei $C \subset X \times Y$ und $C \cap K$ sei abgeschlossen für jede kompakte Menge $K \subset X \times Y$; sei $(x, y) \in \bar{C}$; dann gibt es einen Ultrafilter π in $X \times Y$ mit $C \in \pi$ und $\pi \rightarrow (x, y)$; wir setzen $\pi_1 = pr_X \pi$, $\pi_2 = pr_Y \pi$; π_1 ist Ultrafilter in X mit $\pi_1 \rightarrow x$ und $pr_X C \in \pi_1$; nach Voraussetzung existiert dann eine kompakte Menge $K_1 \subset X$ mit $K_1 \in \pi_1$; wir zeigen, daß $x \in pr_X (C \cap (K_1 \times \{y\}))$ gilt: U sei eine beliebige Umgebung von x; da X regulär ist, existiert eine Umgebung V von x mit $\bar{V} \subset U$; sei $V_1=K_1\cap \bar{V}$; dann gilt V_1 ist kompakt, $V_1\subset K_1$, $V_1\subset U$, $V_1\in \pi_1$, und $x\cap ar{V}_{\scriptscriptstyle 1}$, denn wegen $K_{\scriptscriptstyle 1}{=}ar{K}_{\scriptscriptstyle 1}$ und $\pi_{\scriptscriptstyle 1}{ o}x$ gilt $x\in K_{\scriptscriptstyle 1}$; es sei S $=pr_{Y}(C\cap(V_{1}\times Y));$ L sei eine beliebige kompakte Teilmenge von Y; es ist $S \cap L = pr_Y(C \cap (V_1 \times L))$; nach der Voraussetzung über C ist $C \cap (V_1 \times L)$ abgeschlossen und somit kompakt, folglich ist $S \cap L$ kompakt und damit abgeschlossen in Y; da Y ein k-Raum ist, ist somit S abgeschlossen. W sei eine beliebige Umgebung von y, dann gilt $C \cap (V_1 \times W) \neq \phi$: es gilt $\pi_2 \rightarrow y$, also $W \in \pi_2$, wegen $V_1 \in \pi_1$ gilt also $V_1 \times W \in \pi_1 \times \pi_2 \subset \pi$, wegen $C \in \pi$ folgt $C \cap (V_1 \times W) \neq \phi$; folglich ist auch $S \cap W = pr_Y(C \cap (V_1 \times W)) \neq \phi$; damit gilt $y \in S$. Es existiert dann ein $x_1 \in X$ mit $(x_1, y) \in C \cap (V_1 \times Y)$, also ist $x_1 \in K_1$ und $x_1 \in U$; folglich $x_1 \in pr_X(C \cap (K_1 \times \{y\})) \cap U$; nach obiger Schlußweise $pr_x(C \cap (K_1 \times \{y\}))$ abgeschlossen und, da jede Umgebung von x diese Menge schneidet, gilt $x \in pr_X(C \cap (K_1 \times \{y\}))$; daraus folgt aber $(x, y) \in C$, d.h. C ist abgeschlossen.

Wir weisen zum Abschluß noch auf folgendes hin: In [8], (3.2a) genügt es, wenn L' ein L-Raum ist (und nicht wie dort ein LT_2 -Raum); in (3.3) muß man L' als U-Raum (und nicht als L-Raum) voraussetzen (entsprechend muß in [9], (8) Y ein U-Raum sein) und in (3.3a) muß

L' ein topologischer Raum (statt ein U-Raum) sein.

References

- [1] R. Arens and J. Dugundji: Topologies for function spaces. Pacific J. Math., 1, 5-31 (1951).
- [2] R. W. Bagley and J. S. Yang: On k-spaces and function spaces. Proc. Amer. Math. Soc., 17, 703-705 (1966).
- [3] R. Brown: Function spaces and product topologies. Quart. J. Math. (Oxford), 15, 238-250 (1964).
- [4] J. Dugundji: Topology. Boston (1966).
- [5] D. Gale: Compact sets of functions and function rings. Proc. Amer. Math. Soc., 1, 303-308 (1950).
- [6] J. L. Kelley: General Topology. Princeton, N. J. (1957).
- [7] N. L. Noble: k-Spaces and Some Generalizations. Dissertation, The University of Rochester, Rochester, New York (1967).
- [8] H. Poppe: Stetige Konvergenz und der Satz von Ascoli und Arzelà. Math. Nachr., 30, 87-122 (1965).
- [9] —: Stetige Konvergenz und der Satz von Ascoli und Arzelà. II. Monatsber. Deutsche Akademie der Wiss. zu Berlin, 8(4), 259-264 (1966).
- [10] —: Ein Kompaktheitskriterium für Abbildungsräume mit einer verallgemeinerten uniformen Struktur. Proc. Second. Prague Topol. Symp. (1966).
- [11] —: Stetige Konvergenz und Satz von Ascoli und Arzelà. III, IV. Proc. Japan Acad., 44, 223-239, 240-242 (1968).