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71, Calculus in Ranked Vector Spaces. IV

By Masae YAMAGUCHI
Department of Mathematics, University of Hokkaido

(Comm. by Kinjiré6 KUNUGI, M. J. A.,, May 13, 1968)

1.9. The special case. (1.9.1) Proposition. Let E be a normed
vector space, {x,} a sequence of E and xe E. Then for a sequence
{x.} converges to x in the sense of ranked vector space it is necessary
and sufficient that it converges to x in the sense of norm, i.e.,

{lim z,,} 3 v<=lim ||z, —2||=0.

Proof. (a) Suppose that {limz,}sx, i.e., there exists a se-
quence {U,(x)} of neighborhoods of the point # and a sequence {«a,} of
integers such that,

U)oU) 2Uyx)D - - DU (x)D -+, 0<n< @,
o, <ol - La, <, 0<n<w,,
Sup a,=w,, U,(®) 5x,, and U,(x)eB,,,

for n=0,1,2, ---.
By (1.6.6), each U,(x) is written in the following form, using
U.(x)e,,,
U.(x)=2+V,,(0), n=0,1,2, ...
1
an}'

For every ¢ >0, there exists a positive number N, using sup a,
=®,, such that

where V, (0)= {x; [foe]] <

n>N=> 1 <e.
(249
Since U (@)=x+7V,,(0) 3%, V, 0)s2,—%
1
[ — || <—.
(247
Thus if n>N, then
a0 — ]| < <&
qy

lim ||z, —2||=0.
(b) Suppose coversely that lim||x,—2||=0, then, for 1, there
exists a positive number 7, such that
n>n=| e, — || <1,
Vi(0) > Ly — Xy Xpyy1— Ly * 00y pyyg— Ly » 0
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for -;—, there exists a positive number n, (>>n,) such that

nzn@nwn—xn«g,

Vﬁ(o) 2 xng'—x’ m'n,;+1_x’ tr ety wn2+i_x’ vt

for %, there exists a positive number %, (>n,_,) such that

m

Vin(0) 9 T,y — 8y Trpyir =&, ) Lrgag— &y + -

Let V,.(0)+x=U,(x) for m=0,1, 2, ..., then we have a sequence
{Un(x)} of neighborhoods of the point x such that
U@)DUy@)DUy@)D -+ - DUn@)D -,
U, (%) 3 T,y Up(®) € By, and 1, <ny <By < v v v <My <0 -+
Now we define a sequence {U,(x)} by

U, (x)=U,(x) 3 Xn, U, (x)e B, an,=1
U;u+1(x) =U,(x) D Tny41 Uja(®) € B, Ay =1
U;m—l(x) == Ul(x) El xn2—1 U;m—l(x) € Qg1 a"‘2~1= 1
U ()= "U,(x) 3 &, U,.(x) € B, Any=

U ()= Uy(®) 5 @, U (%) € By ny=3.

Thus we obtain a sequence {U’,(x)} of neighborhoods of the point x
and a sequence {a,} of integers such that
U.@)2U,,.@) DU, DU (@)D -
Oy S 1 Sy g v Sy S e
Un,s (%) 3 @nsiy SUP Qnyiy =@, aNd Uy (%) €D
{liim Xn,ii} D .

Ny +1°

By (1.2.3) we have
{lim 2.} o @.

(1.9.2) Proposition. Let E be a normed vector space and {x,} o
sequence of points in E. Then for a sequence {x,} in E to be a quasi-
bounded sequence it is mecessary and sufficient that the sequence
{||2=||} is bounded.

Proof. (a) Suppose that {x,} is a quasi-bounded sequence. If
our assertion were false, then there would exists a subsequence {, ¢}
such that

1@ nol| <@, | <@yl <o+ o [y | <2 -
and liim [|@n,|| = oco.
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Then 1 0 for i—co,

Mol

and Ty =J||xn,|| —00 for 1—co.

1
N
This contradicts that by (1.7.4) {x,;} is a quasi-bounded sequence.

Therefore {||2,||} is bounded.

(b) Suppose conversely that {||z,||} is bounded, i.e., there exists
a number M such that

l|2.]| <M, n=0,1,2,.-..
Let {¢.} be a sequence in R with p,—0, then we have
0<[| ptan| | <|ptn| M.
Since |(y|M—0 for n—co,
|| ttn%n||—0 for n—co,

That is, {®,} is a quasi-bounded sequence.

(1.9.3) Proposition. If E is a normed vector space, then it is a
separated ranked vector space.

Proof. It suffices to show that E satisfies (1.4.1) axiom (T,).
For this let x, ¥ be arbitrary elements in £ and z=y. i.e.,
|| —y||=2a>0.

We can find a positive integer N such that %<a. Suppose that

m,n>N, Ux) e B,, and V(y) € B,. If 2’ e U(x), since by (1.6.6) U(x)
=24 V,(0), it can be written in the following way :
r=x+x,

where z, ¢ V,(0). Using V,(0)= {x; |[x||<%} , we have

o 2= las]| < L
m

c =< .
Analogously, if ¥’ € V(y), then

Iy —vyll<a.
Now

1o —yll=2' =2+ 2 —y|| = ||z —yl|— ]2’ 2| >0
|z —y||>a oo BEV(Y)

Ux)NV(y)=¢.
That is, the axiom (T,) holds in F, and therefore E is a separated
ranked vector space.

(1.9.4) Proposition. Let E be a normed vector space, {x.} a
sequence in E and x e E. Then for {x,} converges to x in the sense of
ranked vector space it is necessary and sufficient that {x,} converges
to x in the sense of L-convergence, i.e.,

{lim x,} 3 v&={Lim 2,} s x.
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Proof. By (1.8.8), it suffices to prove that {lim x,} s # implies
{Lim ..} 5 @.
Suppose that {lim z,} s . By (1.9.1), we have
lim ||z, —x{|=0.
Each z,—x can be represented in the following form:

Xp—2
B — = |[®n — || —"—,
|20 — ||
where ||x,—2||—0 and, since Fn=® |1 for n=0,1,2,.--,
|[@n — ||
{_Hx"_—x”_} is a quasi-bounded sequence in E.
Lp—2

{Lim (2,—x)} 2 0.
{Lim x,} 2 2.

§ 2. Differentiability and derivatives. In this section, the defini-
tion of differentiability is given and the most elementary results of
calculus are proved.

2.1. Remainder. (2.1.1) Definition. Let r: E,—E, be a map
between ranked vector spaces E,, F,, Then we associate to r a new
map 0,: RX E,—E, defined by

0.Q2, @)= “j’”) it 150
=0 if 2=0.

(2.1.2) Definition. A map r: E,—FE, is called a remainder, and
we write r ¢ R(E,; E,) if and only if

@ r0)=0,
(2) for any quasi-bounded sequence {x,} and for a sequence
{Ax} in R such that 1,—0,
{lim 6,(2», 2.)} 2 0.

Example. The zero map is a remainder,

(2.1.8) Proposition. If r:E,—FE, is a remainder, then it is con-
tinuous at the point zero in the sense of L-convergence.

Proof. Let {Lim z,} 50, i.e.,

xnzlnx; n=0, 1, 2, )
where 1,—0 in R and {«,} is a quasi-bounded sequence in E.
7(Ax%7)
T

n

By assumption one has

{lim T(Zz”x;‘)} 50,

n

and so by (1.7.2) {r(lxnxﬁ,) } is a quasi-bounded sequence.

n
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{Lim r(x,)} 5 0.

That is, r: E,—E, is continuous at the point zero in the sense of L-
convergence.

(2.1.4) Proposition. R(E,; E,) is a vector space, i.e., for any
r, 1€ R(E,; E,) and for any a,, a,€R,

ari+ar. € R(E,; E)).

Proof. (1) (@74 a;m)(0)=a,(r:(0)) + a(ry(0))=0.

(2) Let {z.} be a quasi-bounded sequence and {4,} a sequence in
%R such that 4,—0, then
0«171-(-«21‘2(2%’ xn) = (alrl + ‘§2T2)(ann)
— al("'l(znxn)) + az("’z(znxn))

An
— /rl(/znxn) /rz('lnx'n)
o, 2 + a, I

Since 7, 7, are remainders,

{nm""_l(;ﬁ'i} 50, and {1im_’i=%1@} 50.

n n

{im 0,7, agrs(Ans %)} 2 0.
ar+ar,e R(E; EY).
Thus R(E,; E,) is a vector space.

(2.1.5) Definition. We denote by L(E,; E,) the set of all linear
and continuous maps between ranked vector spaces E,, E,. Then
L(E,, E,) is also a vector space. Indeed if [, ,e L(E,; E,) and
a;, a, € R, it follows, using 1, I, e L(E,, E,), that a,l, + a,l, is also linear
and continuous, i.e., a,l, +a,l, € L(E,; E,).

Example. The zero map belongs to L(E,; E,).

(2.1.6) Lemma. IfreR(E,;FE, andle L(E,; E,), then

l.-re R(E,; E,).

Proof. (1) (I-7)(0)=1Ur(0))=1(0)=0.

(2) Let {x,} be a quasi-bounded sequence in E, and {1,} a se-
quence in R such that 1,—0, then

0l-r(2n7 90,,): (lr)lz(lnxn) — l('r(;nxn))

since I: E,—FE, is linear,
— l{ (A, %1) }
An '

By assumption we have
{um_-_’"(';n”") } 50,

n

and since l: E,—F, is continuous,
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Pmn@@ﬁﬁﬂaum=o

{lim @,.,(2,%,)} 2 0
l-re R(E,; E,).
(2.1.7) Lemma. Letre R(E,;FE,),le L(E,;E,),andr" ¢ R(E,;E,),
then
r.(l+7)e R(E,; E,).
Proof. (1) ((+7))(0)=7'(1(0)+r(0))=7'(0)=0.
(2) Let {z,} be a quasi-bounded sequence in E, and {4,} a se-
quence in R such that 4,—0, then
B torhon B =07 (4 1))

n

Since [ is linear,

[ (A l(,) + 7(A02,)]

[ {4 25221 ]

Wmﬂ%ﬂ490

n

e

By assumption we have

Hence

{M} is a quasi-bounded sequence. By (1.7.7) {l(x,)} is

n

also a quasi-bounded sequence. Therefore it follows from (1.7.5)
that {l(w,,)+1(—'3"—x’l)_} is a quasi-bounded sequence. Thus, since
" e R(E,; By,

e

7 (14+7) e R(E,; Ey).




