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110. On the Alexander.Pontrjagin Duality Theorem

By Hikosaburo KOMATSU
Department of Mathematics, University of Tokyo

(Comm. by Kunihiko KODAIRA, M.J.A., June 12, 1968)

Let V be an open set in R and let K be a compact subset of V.
In [2] we proved the duality between Hn-(K, C) and H(V, C)
=H(V mod V-K, C), p-O, 1, ..., n, under the assumption that
dim H-(K, C) is at most countable or p=0, 1, ..., n. The purpose
of this note is to show that the assumption holds unconditionally and
therefore that the duality holds for any compact set K.

Theorem 1. Let K be a compact set in R and let F be a field.
Then the dimension of the cohomology group Hp(K, F) (defined as in
Godement [1]) is at most countable for any p.

Proof. Since
Hp(K, F)-lim H(U, F)

when U runs over all neighborhoods oi K by Thorme 4.11.1 of [1],
it suffices to show that there exists a countable fundamental system
of neighborhoods of K consisting of open sets U such that
dim H(U, F)

Clearly we can find a countable undamental system of neighbor-
hoods of K. Let V be a member. At each pointxeK, thereisan
open ball W containing x and contained in V. Choose a finite sub-
covering W of the covering (W;xK} and let U= U W. If we
denote by c the open covering {W} of U, it follows from Leray’s
theorem (Thorme 5.2.4 of [1]) that Hp(U, F) is isomorphic to the
cohomol0gy group. H(C, F) of the covering q/Y. The latter is clearly
of finite dimension. Thus there is an open set U which satisfies
Kc Uc V and dim H(U, F)

Now, combining Theorem 1 with Theorem 11 of [2] (cf. also
Theorem 20 (ii) of [3]), we obtain the following Alexander-Pontrjagin
duality theorem.

Theorem 2. Let K and V be as in Theorem 1. Then Hn-(K, C)
and H(V, C) have the natural structure of the dual Frchet-Schwartz
space and of the Frgchet-Schwartz space, respectively, and they are
the strong dual spaces of each other. More precisely there is an at
most countable cardinal number bn- such that Hn-(K, C)-C
and H(V, C)-C-.

Consequently, the Jordan-Brouwer theorem (Theorem 12) of [2]
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is improved as follows"
Theorem 3. Let V, K, and b-1 be as in Theorem 2. Then, the

number of connected components of V-K is equal to the sum of b-and the number of connected components of V.
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