110. On the Alexander-Pontrjagin Duality Theorem

By Hikosaburo Komatsu
Department of Mathematics, University of Tokyo (Comm. by Kunihiko Kodaira, m. J. a., June 12, 1968)

Let V be an open set in R^{n} and let K be a compact subset of V. In [2] we proved the duality between $H^{n-p}(K, C)$ and $H_{K}^{p}(V, C)$ $=H^{p}(V \bmod V-K, C), p=0,1, \cdots, n$, under the assumption that $\operatorname{dim} H^{n-p}(K, C)$ is at most countable for $p=0,1, \cdots, n$. The purpose of this note is to show that the assumption holds unconditionally and therefore that the duality holds for any compact set K.

Theorem 1. Let K be a compact set in \boldsymbol{R}^{n} and let F be a field. Then the dimension of the cohomology group $H^{p}(K, F)$ (defined as in Godement [1]) is at most countable for any p.

Proof. Since

$$
H^{p}(K, F)=\underset{\rightarrow}{\lim } H^{p}(U, F)
$$

when U runs over all neighborhoods of K by Théorème 4.11.1 of [1], it suffices to show that there exists a countable fundamental system of neighborhoods of K consisting of open sets U_{j} such that $\operatorname{dim} H^{p}\left(U_{j}, F\right)<\infty$.

Clearly we can find a countable fundamental system of neighborhoods of K. Let V be a member. At each point $x \in K$, there is an open ball W_{x} containing x and contained in V. Choose a finite subcovering W_{i} of the covering $\left\{W_{x} ; x \in K\right\}$ and let $U=U W_{i}$. If we denote by \mathscr{W} the open covering $\left\{W_{i}\right\}$ of U, it follows from Leray's theorem (Théorème 5.2 .4 of [1]) that $H^{p}(U, F)$ is isomorphic to the cohomology group $H^{p}(\mathscr{W}, F)$ of the covering \mathscr{W}. The latter is clearly of finite dimension. Thus there is an open set U which satisfies $K \subset U \subset V$ and $\operatorname{dim} H^{p}(U, F)<\infty$.

Now, combining Theorem 1 with Theorem 11 of [2] (cf. also Theorem 20 (ii) of [3]), we obtain the following Alexander-Pontrjagin duality theorem.

Theorem 2. Let K and V be as in Theorem 1. Then $H^{n-p}(K, C)$ and $H_{K}^{p}(V, C)$ have the natural structure of the dual Fréchet-Schwartz space and of the Fréchet-Schwartz space, respectively, and they are the strong dual spaces of each other. More precisely there is an at most countable cardinal number b^{n-p} such that $H^{n-p}(K, C) \cong C^{\left(6^{n-p)}\right.}$ and $H_{K}^{p}(V, C) \cong C^{b n-p}$.

Consequently, the Jordan-Brouwer theorem (Theorem 12) of [2]
is improved as follows:
Theorem 3. Let V, K, and b^{n-1} be as in Theorem 2. Then, the number of connected components of $V-K$ is equal to the sum of b^{n-1} and the number of connected components of V.

References

[1] R. Godement: Topologie algébrique et théorie des faisceaux. Hermann (1958).
[2] H. Komatsu: Resolutions by hyperfunctions of sheaves of solutions of differential equations with constant coefficients. Math. Ann., 176, 77-86 (1968).
[3] -: Projective and injective limits of weakly compact sequences of locally convex spaces. J. Math. Soc. Japan, 19, 366-383 (1967).

