178. On the Minimality of the Polar Decomposition in Finite Factors

By Marie Choda and Hisashi Choda
Department of Mathematics, Osaka Kyoiku University
(Comm. by Kinjirô Kunugi, m. J. A., Oct. 12, 1968)

1. Ky Fan and A. J. Hoffman [2] established the following matrix inequalities: For every unitarily invariant norm of matrices,
(i) If A is an $n \times n$ matrix and $A=U H$ where U is unitary and H is positive-definite, then

$$
\|A-U\| \leqq\|A-W\| \leqq\|A+U\|,
$$

for every unitary matrix W [2; Theorem 1],
(ii) If A is an $n \times n$ matrix, then

$$
\left\|A-\frac{A+A^{*}}{2}\right\| \leqq\|A-H\|,
$$

for every hermitean matrix H [2; Theorem 2],
(iii) If H and K are hermitean $n \times n$ matrices, then

$$
\left\|(H-i)(H+i)^{-1}-(K-i)(K+i)^{-1}\right\| \leqq 2\|H-K\|
$$

[2; Theorem 3].
In this note, we shall extend these inequalities of Fan and Hoffman for finite factors.
2. Throughout the note, let \mathcal{A} be a finite factor with the (normalized) faithful normal trace φ such that $\varphi(1)=1$ (cf. [1]). For each $T \in \mathcal{A}$,

$$
\|T\|_{2}^{2}=\varphi\left(T^{*} T\right)
$$

defines a norm on \mathcal{A}, by which \mathcal{A} becomes a prehilbert space. In a finite factor \mathcal{A}, if $T=V|T|$ is the polar decomposition of T, then the partially isometric operator V can be extended to a unitary $U \in \mathcal{A}$ such that $T=U|T|$.
3. We shall show that the unitary operator U appeared in the polar decomposition is one of the nearest unitary operators to the given T in \mathcal{A}, which will give an illustration of the polar decomposition in the finite factor \mathcal{A} :

Theorem 1. Let T be any operator in \mathcal{A} and $T=U H$ the polar decomposition of T, where U is a unitary, then for any unitary operator V in \mathcal{A},

$$
\begin{equation*}
\|T-U\|_{2} \leqq\|T-V\|_{2} \leqq\|T+U\|_{2} \tag{1}
\end{equation*}
$$

Proof. By the definition of the norm,

$$
\|T-U\|_{2}^{2}=\|U H-U\|_{2}^{2}=\varphi\left(H^{2}-2 H+1\right),
$$

and for a unitary operator $W \in \mathcal{A}$ such that $W=U^{-1} V$,

$$
\|T-V\|_{2}^{2}=\|U H-V\|_{2}^{2}=\varphi\left(H^{2}-H W-W^{*} H+1\right) .
$$

Hence we have

$$
\begin{aligned}
\|T-V\|_{2}^{2}-\|T-U\|_{2}^{2} & =2 \varphi(H)-\varphi\left(H W+W^{*} H\right) \\
& =2[\varphi(H)-\operatorname{Re} \varphi(H W)] .
\end{aligned}
$$

Now, $\varphi(H)$ is positive and

$$
\begin{align*}
\operatorname{Re} \varphi(H W) & \leqq|\varphi(H W)| \\
& =\left|\phi\left(H^{\star} H^{\star} W\right)\right| \tag{2}\\
& \leqq \varphi(H)^{\star} \varphi\left(W^{*} H^{\star} H^{\star} W\right)^{\frac{1}{2}} \\
& =\varphi(H),
\end{align*}
$$

by the Schwarz inequality. Therefore,

$$
\|T-V\|_{2}^{2}-\|T-U\|_{2}^{2} \geqq 0,
$$

that is, we have proved the first inequality.
For the second inequality, we need the symmetric argument:

$$
\|T+U\|_{2}^{2}-\|T-V\|_{2}^{2}=2[\varphi(H)+\operatorname{Re} \varphi(H W)]
$$

and (2) imply

$$
\|T+U\|_{2} \geqq\|T-V\|_{2}
$$

for all unitary $V \in \mathcal{A}$.
4. We shall prove a converse of Theorem 1:

Theorem 2. For an operator T in \mathcal{A}, let U be a unitary operator in \mathcal{A} such that

$$
\|T-U\|_{2} \leqq\|T-V\|_{2}
$$

for any unitary operator V in \mathcal{A}, then $T=U|T|$.
Proof. Let $T=W|T|$ be a polar decomposition of T by a unitary operator W in \mathcal{A}.

By the assumption, we have

$$
\|T-U\|_{2} \leqq\|T-W\|_{2} .
$$

Hence, we have

$$
\varphi[(T-U) *(T-U)] \leqq \varphi[(T-W) *(T-W)],
$$

and so

$$
\varphi\left(W^{*} T+T^{*} W-U^{*} T-T^{*} U\right) \leqq 0 .
$$

Since φ is a faithful trace on \mathcal{A},

$$
\begin{gathered}
0 \geqq \varphi\left(|T|+|T|-U * W|T|-|T| W^{*} U\right) \\
=\varphi\left[|T| \xi(U-W)^{*}(U-W)|T| t\right] \geqq 0
\end{gathered}
$$

implies

$$
U|T|^{\mid}=W|T|^{\ddagger} .
$$

Therefore, we have

$$
T=W|T|=W|T| T|z=U| T|T| z=U|T| .
$$

5. Since the proof of [2; Theorem 2] is based only on the invariance of the norm under the conjugation, (ii) of Fan and Hoffman is extendable in our case:

Theorem 3. If $T \in \mathcal{A}$, then
(3)

$$
\left\|T-\frac{T+T^{*}}{2}\right\|_{2} \leqq\|T-H\|_{2},
$$

for any hermitean $H \in \mathcal{A}$.
We shall repeat the proof of Fan and Hoffman:

$$
\begin{aligned}
\left\|T-\frac{T+T^{*}}{2}\right\|_{2} & =\left\|\frac{T-H}{2}+\frac{H-T^{*}}{2}\right\|_{2} \\
& \leqq \frac{1}{2}\|T-H\|_{2}+\frac{1}{2}\left\|T^{*}-H\right\|_{2} \\
& =\|T-H\|_{2} .
\end{aligned}
$$

A converse of Theorem 3 will be obtained in a forthcoming paper of T. Furuta and R. Nakamoto.
6. For (iii), we have also

$$
\begin{equation*}
\left\|\frac{H-i}{H+i}-\frac{K-i}{K+i}\right\|_{2} \leqq 2\|H-K\|_{2} \tag{4}
\end{equation*}
$$

for every pair of hermitean operators H and K belonging to \mathcal{A}. However, we do not give here a proof, since (4) is already established by Murray and von Neumann [3; Lemma 1.5.1].

References

[1] J. Dixmier: Les algebres d'operateurs dans l'espace Hilbertien. GauthierVillars, Paris (1957).
[2] Ky Fan and A. J. Hoffman: Some metric inequalities in the space of matrices. Proc. Amer. Math. Soc., 6, 111-116 (1955).
[3] F. J. Murry and J. von Neumann: Rings of operators. IV. Ann. of Math., 44, 716-808 (1943).

