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1o Ky Fan and A. J. Hoffman [2] established the following ma-
trix inequalities" For every unitarily invariant norm of matrices,

( ) If A is an n n matrix and A-UH where U is unitary and
H is positive-definite, then

[[A-- U[[ [[A- W[[ __< [[A + U[[,
or every unitary matrix W [2; Theorem 1],

(ii) I A is an n x n matrix, hen

< ]IA--H]I,
2

for every hermitean matrix H [2; Theorem 2],
(iii) I H and K are hermitean n x n matrices, then

[](H--i)(H+ O--(K-i)(K/ i)- _<_2[[H--K[[,
[2; Theorem 3].

In this note, we shall extend these inequalities of Fan and Hoff-
man for finite factors.

2. Throughout the note, let be a finite aetor with the (normal-
ized) aithful normal trace ? such that ?(1)--1 (ef. [1]). For each
Te,

defines a norm on , by which becomes a prehilbert space. In a
finite factor Z, if T--V IT[ is the polar decomposition of T, then the
partially isometric operator V can be extended to a unitary U e Z
such that T= U T [.

3. We shall show that the unitary operator U appeared in the
polar decomposition is one of the nearest unitary operators to the
given T in , which will give an illustration of the polar decomposi-
tion in the finite factor "Theorem 1. Let T be any operator in A and T-UH the polar
decomposition of T, where U is a unitary, then for any unitary
operator V in ,
1 ) T-- UI[ T- Vile.<= T-F Ull..

Proof. By the definition o the norm,
]]T-- U[]--[] UH- U][=q(H--2H+ 1),
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and for a unitary operator W e such that W--U-V,
T-- V - UH-- V -- q(H-HW--W*H/ 1).

Hence we have
[IT-- V - ][T--U[[--29(H)--q(HW/ W’H)

2[(H)-- Re 9(HW)].
Now, 9(H) is positive and

Re (HW) =<[ 9(HW)

( 2 ) [(H1/2H1/2W)[
<= 9(H)1/29(W*H1/2H1/2W)1/2
=9(H),

by the Schwarz inequality. Therefore,
T--V --[T--U >=0,

that is, we have proved the first inequality.
For the second inequality, we need the symmetric argument:

[IT+ U[ - [T-- V 1=219(H) + Re 9(HW)]
and (2) imply

or all unitary V e Z.
4. We shall prove a converse of Theorem 1"
Theorem 2. For an operaor T in o, le U be a unitary opera,or

in y such that

for any unitary operator V in , then T-UITI.
Proof. Let T=W[T. be a polar decomposition of T by a unitary

operator W in Z.
By the assumption, we have

IT- UII=< IT- Wl[.
Hence, we have

9[(T-- U)*(T- U)] =< 9[(T- W)*(T- W)],
and so

9(W*T+ T*W--U*T-T*U)<=O.
Since is a faithful trace on ,

0>=(?([ T [+[ T i-- U*WI T [-[ TI W*U)
=9[l T I(U- W)*(U- W) IT I]>_-0

implies
UITI-WITI.

Therefore, we have
T:W T [-W T [1/21T i1/2- U T [i[ T i1/2= V T [.

5. Since the proof of [2; Theorem 2] is based only on the in-
variance of the norm under the conjugation, (ii) of Fan and Hoffman
is extendable in our case"

Theorem 3. If T s , then
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(3) T T+T*II < IT-HI .,
2 --for any hermitean H e .

We shall repeat the proof of Fan and Hoffman

< 1 IIT--HII.+ 1 T*

[T-H .
A converse of Theorem 3 will be obtained in a forthcoming paper

of T. Furuta and R. Nakamoto.
6. For (iii), we have also

(4) H+iH--i K--i
=<2 ’H--K ,

for every pair of hermitean operators H and K belonging to .
However, we do not give here a proof, since (4) is already established
by Murray and von Neumann [3 Lemma 1.5.1].
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