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170. On Extensions with Given Ramification

By Toyofumi TAKAHASHI
Mathematical Institute Tohoku University, Sendai

(Comm. by Kenjiro SHODA, M. J. A., Oct. 12, 1968)

Let £ be a number field of finite degree, and let S be a set of primes
of k, including the achimedean ones. Let G be the Galois group of
the maximal extension Q2 of k& unramified outside S. Throughout this
paper we assume that S contains all primes above a fixed prime num-
ber I. Tate [7] has asserted that G has strict cohomological dimension
2 with respect to [, if k is totally imaginary in case =2, but the proof
has been unpublished. (Brumer [3] showed that G has cohomological
dimension 2 with respect to ! under the same assumptions.) We shall
give here the proof of the above Tate’s theorem (Section 1). As a
corollary of this theorem, we obtain an arithmetic theorem and we
get the l-adic independence of independent units (Section 2). Finally,
we shall determine the structure of the connected component of the S-
idele class group. This is a generalization of the results of Weil [10]
and Artin [1] (see also [2; Chap. IX])).

1. Cohomological dimension. Throughout this paper notations
and terminologies are the same as in Tate [7]. By m we shall always
understand a positive integer such that mks=ks where kg is the ring
of all S-integers of k. For any abelian group A, let A(l) denote the
I-torsion part of A. Let p denote the group of all roots of unity, and
let u,, denote the group of m-th roots of unity.

Theorem 1. Let JS denote the projection to S, of the idéle group
of 2, where S, is the set of non-archimedean primes in S. We put E
=J5(1)/ p().  Suppose that k is totally imaginary if 1=2. Then, for
any l-torsion module M, we have an tsomorphism

H(ks, M)y*=Hom (M, E).

Proof. By our assumptions G has cohomological I-dimension 2.
Let E be a module dualisant for G with respect to I. We shall show
E=E. By [5; Chap. I, Annexe] we have E=1lim D,(Z/1!Z) where

—_—

¢
Dy(Z|mZ)=lim H¥(K s, Z| mZ)*, the inductive limit is taken with respect
—_—
KCQ
to cores*. By Tate’s duality theorem, we have a commutative exact
diagram
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HO(KS’ /’lm)_’)vleﬁ!g HO(Kv, ﬂm)—”Hz(KSy Z/mZ)*“’Hl(KS’ ﬂm)
can. can. cores* res

HO(LS, ﬂm)_) I;IS HO(Lw, ﬂm)—)Hz(LS, Z/mz)*_’Hl(LS’ ﬂm)

for KcLc Q. Hence we have an exact sequence ;em—>J,5L—>D2(\Z/ mZ)
—0, where JS is the subgroup of elements « of JS such that maz=0.
Thus we get an exact sequence p(l)—J5())—E—0, and the assertion is
proved.

Lemma 1. For ve S, we have H(D,, p(0)=0, where O, is the
ring of integers of the completion k, of k at v.

Proof. Let s be a generator of the Galois group of the maximal
unramified extension of %k,. We have HYD,, p(O)*=H(D,, n)*)

=(p®/ pM*-9*. Since the sequence 0—H"(O,, u()— /,e(l)ﬁ p(D—0
is exact and HD,, p() is finite, p()'~* is not finite. On the other
hand, all proper subgroups of u(l) are finite. Hence we get u(D
= p(D'~. Q.E.D.

Lemma 2. The kernel Ker'(ks, p()) of the canonical map
H'(kg, pD)— vl;[sﬂl(k”’ p(D) s finite.

Proof. By Lemma 1 we have a commutative exact diagram
0—Ker'(ks, p(D)—HX ks, p(D)— [] H'(k,, pD) X E[SH‘(Q), J210))

es
inf id. Xinf

0—Ker'(k, u()) — H*(k, p(D) —>v];[S Hi(k,, p(D)x v];IS H'(k,, p(D).

Hence the inflation H'(ks, p(D)—H'(k, (1)) induces an injection

Ker'(kg, p())—Ker'(k, p(@). Therefore it is sufficient to show that

Ker'(k, p(D) is finite. Let Q(m) be the set of elements of k which are

local m-th powers everywhere. Then (Q(m): k™) <2([2; Chap. X,

Theorem 1]). Since Ker'(k, p,)=Q(m)/k™, we see that Ker'(k, u()

=lim Ker'(k, p;2) is a finite group of order at most 2. Q.E.D.
t

Theorem 2. G has strict cohomological l-dimension 2, except if
=2 and k is not totally imaginary.

Proof. It is sufficient to show that H°(kg, E) never contains any
subgroups isomorphic to Q,/Z, (cf. [5; Chap. I, Annexe]). We have
the exact sequence 0— p(l)-»fs(l)-»E’QO. Passing to cohomology,
we obtain the sequence 0—H°(kg, p(D))— Je]s H'(k,, p())—H(ks, E)

—HYks, p()— [] H'(k,, ¢(D)). Hence we obtain an exact sequence
v€ESo

0—H(ks, p(D)— ]'[S H(k,, p(D)— H(ks, E) — Ker'(ks, u())—0. Since
vESo

H'(ks, p@), H(k,, (D) and Ker'(ks, p(1)) are finite, H'(ks, E) has no
divisible element except 0. Q.E.D.
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Corollary. For any G-module M, we have isomorphisms
Hi(kgs, M)()= [ H(k,, M)D) (1>3).
h

Proof. This is an immediate consequence of [6 ; Lemma 3].

Let G(I) denote the Galois group of the maximal l-extension of k
unramified outside S. It is easy to determine the number of generators
and that of relations of G(I), using the exact sequence of Tate [7] and
the equality [8 ; Theorem 2.2]. We omit the proof.

Proposition. Let r, be the number of complex primes of k. Sup-
pose that S is finite. Then G() s a pro-l-group on —do+ Y, d,+1

veSs
+dim Q(, S)/ k' generators with —o+ ZejSBv-—’rz+dim QU, S)/ k' rela-
tions, where Q(l, S) is the set of elements x of k such that x e ki for all
ve S and ord,x=0 mod. I for all ve S, and 0 (resp. d,) is equal to O if
itk (resp. p, &k, and to 1 if p,Ck (resp. p,Ck,).

Remark. If §=1 (i.e., k contains the I-th roots of unity), Q(, S)/k!
=Ker'(ks, p,)=Ker'(ks, Z/1Z)=(Cls/Cly)*, where Clg is the quotient
of the ideal class group of k by the subgroup generated by the classes
of all primes in S. This is the case obtained by Brumer [3]. See also
Safarevié [4].

2. The l-adic independence of independent units.

Theorem 3. Let Q(m, S) be the set of all elements x of k such
that x e k™ for all v e S and ord,z=0 mod. m for all ve S. Then, for
each m, there exists an integer m’ such that m'ks=ky and Q(m/', S)
c k™.

Proof. By Corollary of Theorem 2 we have H%ks, Q,/Z,)
=H%kg, Z)(p)=0 for p|m. According to [7; Theorem 3.1 (a)l, we
have an exact sequence 0—Ker'(ks, p,)*—Hks, Z/mZ). Using the
exact sequence 0— pu,—02—0Q™—0, we obtain H'(ks, u,)=kN Q2™ k™.
By the theory of ramification in Kummer extensions, kN Q2™ coincides
with the set of elements whose orders are divisible by m at each prime
not in S. Hence we have Ker'(kg, p,)=Q(m, S)/k™ and we get a com-
mutative exact diagram

0—[Qm, )/ km1*—H® (ks,

! !
0—[Q(m’, S)/ k™ 1*—H? (ks,

1
m

1

m/

for m|m’. We obtain lim Q(m,S)/k™=0. Since Q(m,S)/k™
—

Z/Z)

z/ z)

m

=Ker!(kg, pn,) are finite, the assertion is proved.
Corollary. Lete, ---, ¢, be a system of independent units of k
such that ;=1 mod. v for all v above l. The ¢, are naturally imbed-
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ded in the direct product [ 1+ P,) where P, is the prime ideal of k,.
vll
Since [] 1+ P,) is a abelian pro-l-group, it can be regarded as o Z;-
|l

module.
Then ¢, - - -, ¢, are independent over Z; in [ (1+P,).
V|l

This corollary can be proved by the similar way as the proof of
[2; Chap. IX, Theorem 2].

3. The structure of the connected component of the S.idele
class group. Let K/k be a Galois extension of finite degree unrami-
fied outside S with Galois group G. We use following notations :

J : the idéle group of K, US= E[SU,,, where U, is the unit group of

K,, J,: the group of idéles of K of absolute value 1, C5=J/KU#®: the
S-idele class group of K, C§=J,/KU*®, H : the connected component of
J, DS : the connected component of C5, HS=KUSH|/KUS, HS=H*NC§
and D§=D5NC§.

We remark that C¢ is a class formation for extensions unramified
outside S (cf. [9]) and D3 is nothing but the kernel of the reciprocity
map of Cf onto the Galois group of the maximal abelian extension of
K unramified outside S. By the elementary theory of topological
groups, the subgroup Hf of C? is dense in DS. Hence D* is the com-
pletion of HS. We have DS=RxD$ and HS=RxH§. Let r, and r,
be the number of real primes of K and that of complex primes of K
respectively. As usual we put r=7r,+7r,—1.

Hf is isomorphic to W x T"2, where T is the unit circle of C and W
is a vector space over R of dimension . Of course, the topology of
W is different to the ordinary one. Lete, ---, ¢, be a system of in-
dependent totally positive units such that ¢;=1 mod. v for all non-
archimedean primes v in S. By E we denote the group of units
generated by the ¢;. Then by Unit Theorem, E can be regarded as a
lattice in W. By m we shall always understand a module whose prime
factors are contained in S. Let Ey denote the group of elements of
E which are congruent to 1 mod. m. Let V=Re,+.-.+Re, be a
vector space over R of dimension » with the ordinary topology, and
let f be the linear map of V into W such that f(e,)=e¢,. We put L
=Ze+ -+ Ze,=fYE) and Ly=f~*(Ew). For a subset X of V, f(X)
is an open neighbourhood of 0 if and only if X is open and contains
one of the lattices L. Hence the completion W of W is isomorphic
to lim V/Lu. Therefore we have

“w
DS=Rx(im V/Lw) X T™.
W
Proposition. DS5/HS is uniquely l-divisible.
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Proof. Since DS/HS=W/W and W is uniquely divisible, it is
sufficient to show that W is uniquely Il-divisible. It is clear that W is
divisible. By Corollary of Theorem 3, for each module m there exists
a module m’ such that E,, c £}, hence L,, ClL,,. This means that
W=1im V /Ly has no I-torsion part. Q.E.D.

P2u—

m
Corollary.
e (z/22)", if 1 is even and 1=2,
(2 S —
H'G, D))= 0, if 1 18 odd or 12,
where a is the number of ramified archimedean primes of k.
Theorem 4. Let S be a set of rational primes, including the

archimedean one. Then we have

DS=RX(VS|Z)" X I
and
(DS)*=RXQsX Z™,
where VS=RX T[] Z, in which Z is imbedded diagonally and Qg is the

pESH

additive group of S-integers of Q with the discrete topology.
Proof. By Corollary of Theorem 3, the filters {Lm} and {mL} are
cofinal. Therefore we have limV/Ln=limV/mL=(im R/mZ)".
“w T “w
Since (lim R/mZ)*=Q;=(VS/Z)*, the theorem is proved.
«—

m
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