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170. On Extensions with Given Ramification

By Toyofumi TAKAHASHI
Mathematical Institute T6hoku University, Sendai

(Comm. by Kenjiro SHODA, M. J. h., Oct. 12, 1968)

Let k be a number field of finite degree, and let S be a set of primes
of k, including the achimedean ones. Let G be the Galois group of
the maximal extension t9 of k unramified outside S. Throughout this
paper we assume that S contains all primes above a fixed prime num-
ber 1. Tate [7] has asserted that G has strict cohomological dimension
2 with respect to l, if k is totally imaginary in case/-2, but the proof
has been unpublished. (Brumer [3] showed that G has cohomological
dimension 2 with respect to under the same assumptions.) We shall
give here the proof of the above Tate’s theorem (Section 1). As a
corollary of this theorem, we obtain an arithmetic theorem and we
get the/-adic independence of independent units (Section 2). Finally,
we shall determine the structure of the connected component of the S-
idle class group. This is a generalization o the results o Weil [10]
and Artin [1] (see also [2; Chap. IX]).

1. Cohomological dimension. Throughout this paper notations
and terminologies are the same as in Tare [7]. By m we shall always
understand a positive integer such that mk--ks where k is the ring
o all S-integers of k. For any abelian group A, let A(1)denote the
/-torsion part of A. Let/ denote the group of all roots of unity, and

let/ denote the group of m-th roots of unity.

Theorem 1. Let j-s denote the projection to So of the idle group
of [2, where So is the set of non-archimedean primes in S. We put E
=J-(1)/ /(1). Suppose that k is totally imaginary if /=2. Then, for
any 1-torsion module M, we have an isomorphism

H(ks, M)*. Home(M, E).

Proof. By our assumptions G has cohomological /-dimension 2.
Let E be a module dualisant or G with respect to I. We shall show
E=/. By [5; Chap. I, Annexe] we have =limD.(Z/ltZ) Where

D(Z/mZ) lim H:(Ks, Z/mZ)*, the inductive limit is taken with respect

to cores*. By Tate’s duality theorem, we have a commutative exact
diagram
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H(Ks, l) H(K, /)-oH(Ks, Z/mZ)*-.H(Ks, [)can. s can. lcores* res
H(Ls, t)- I H(L, /)H(Ls, Z/mZ)*H(Ls, [)

wSo

for KcLc2. Hence we have an exact sequence lJSD(Z/mZ)
-0, where js is the subgroup o elements x o js such that mx-O.
Thus we get an exact sequence/(1)-JS(1)-E--.O, and the assertion is
proved.

Lemma 1. For v eS, we have H((C),, /(/))--0, where (C) is the
ring of integers of the completion k, of k at v.

Proof. Let s be a generator o the Galois group of the maximal
unramified extension of k,. We have H((C),/(/))*H((C), /(/)*)

(/z(1) / (/)-)*. Since the sequence OH((C)v, [z(1)) [(1) [(1)--O
is exact and H((C),,/(1)) is finite, V(1)- is not finite. On the other
hand, all proper subgroups of /(1) are finite. Hence we get /(1)
=/(1)-. Q.E.D.

Lemma 2. The kernel Ker(ks, /z(1)) of the canonical map
H(ks, [(1))-o I-I H(k,, [(1)) is finite.

Proof. By Lemma 1 we have a commutative exact diagram

0-Ker(ks, l(1))oH(ks, t(l)) I-[ H(k, t(1)) I-[ H((C), lz(1))
in id.xin

0Ker(, (1)) H(, (1)) H(k, (1))x H(, (1)).
vS

Hence the inflation H(ks, (1))H(k, p(1)) induces an injection
Ker(ks, p(/))Ker(k, p(1)). Therefore it is sufficient to show that
Ker(k, Z(1)) is finite. Let Q(m) be the set of elements o k which are
local m-th powers everywhere. Then (Q(m)" k)2([2; Chap. X,
Theorem 1]). Since Ker(k, Z)= Q(m)/k, we see that Ker(k, p(1))
=lim Ker(k, ) is a finite group of order at most 2. Q.E.D.

Theorem 2. G has strict cohomological 1-dimension 2, except if
l-2 and k is not totally imaginary.

Proof. It is sufficient to show that H(ks, E) never contains any
subgroups isomorphic to t/Zt (cf. [5; Chap. I, Annexe]). We have
the exact sequence Ooz(1)JS(1)EO. Passing to cohomology,
we obtain the sequence OH(ks, Z(1)) H(k,, p(1))oH(ks, E)

vSo

oH(ks, Z(1))o H(k,, Z(1)). Hence we obtain an exact sequence
vSo

0H(ks, p(1)) H(k, p(1))oH(ks, E)Ker(ks, p(/))0. Since
v8o

H(ks, (/)), H(k, p(1)) and Ker(ks, p(1)) are finite, H(ks, E) has no
divisible element except 0. Q.E.D.
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Corollary. For any G-module M, we have isomorphisms

H(ks, M)(1)- [ H(k, M)(1) (i_3).
arch

Proof. This is an immediate consequence of [6; Lemma 3].
Let G(1) denote the Galois group of the maximal /-extension of k

unramified outside S. It is easy to determine the number of generators
and that of relations of G(1), using the exact sequence of Tare [7] and
the equality [8; Theorem 2.2]. We omit the proof.

Proposition. Let r be the number of complex primes of k. Sup-
pose that S is finite. Then G(1) is a pro-l-group on -+ +1
+dim Q(1, S)/k generators with -+ --r:+dim Q(1, S)/k rela-

tions, where Q(1, S) is the set of elements x of k such that x e k for all
v e S and ordx0 mod. for all v S, and (resp. ) is equal to 0 if

k (resp. k) and to 1 if k (resp. Zt ko).
Remark. If -1 (i.e., k contains the/-th roots o unity), Q(1, S)/k

=Ker(k, Z)=Ker(k, Z/1Z)-(Cls/CI)*, where Cl is the quotient
of the ideal class group o k by the subgroup generated by the classes
o all primes in S. This is the case obtained by Brumer [3]. See also
Safarevi5 [4].

2. The/.adic independence of independent units.
Theorem . Let Q(m, S) be the set of all elements x of k such

that x e k for all v e S and ordox0 rood. m for all v S, Then, for
each m, there exists an integer m’ such that re’ks=ks and Q(m’, S)
k.

Proof. By Corollary of Theorem 2 we have H(ks,/Z)
=H(k, Z)(p)=0 or p]m. According to [7; Theorem 3.1 (a)], we
have an exact sequence 0Kerl(ks, V)*H(ks, Z/mZ). Using the
exact sequence 0Z990, we obtain H(ks, Z)=k9/k.
By the theory of ramification in Kummer extensions, k 9 coincides
with the set of elements whose orders are divisible by m at each prime
not in S. Hence we have Ker(k, Z)-Q(m, S)/k and we get a com-
mutative exact diagram

0[Q(m, S)/k]*H(k, Z/Z)m

for mira’. We obtain lira (m, S)/-O. Since (m, S)/

Ker(s, ) are finite, the assertion is roved.
CorollarT. Let s, ..., s be tem oI igeedet it oI

eh that s-I rood. or ll bove 1. The s e tall imbeg-
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ded in the direct product I-[ (1+ P) where Po is the prime ideal of k.
Since I-I (I+P)is a abelian pro-l-group, it can be regarded as a Z-
module.
Then 1, ", are independent over Z ,in (1+ P).

This corollary can be proved by the similar way as the proo of
[2; Chap. IX, Theorem 2].

3. The structure of the connected component of the Soidble
class group. Let K/k be a Galois extension o finite degree unrami-
fled outside S with Galois group G. We use ollowing notations"

J" the idle group of K, Us- I-[ Uw where U. is the unit group of
wS

K, Jo" the group of idles o K o2 absolute value 1, Cs-J/KU" the
S-idle class group of K, Co-Jo/KU, H" the connected component of
J, Ds" the connected component o C, Hs=KUSH/KU, Ho-Hs Co
and D0 Ds C0.

We remark that Cs is a class formation for extensions unramified
outside S (c. [9]) and Ds is nothing but the kernel of the reciprocity
map of Cs onto the Galois group of the maximal abelian extension of
K unramified outside S. By the elementary theory o topological
groups, the subgroup Hs of Cs is dense in Ds. Hence Ds is he com-
pletion o H. We have Ds=RDso and H=RH0s. Let randr
be the number of real primes of K and that of complex primes of K
respectively. As usual we put r-r/r-l.

H0 is isomorphic to W T, where T is the unit circle of C and W
is a vector space over R o dimension r. Of course, the topology o
W is different to the ordinary one. Let s, ..., be a system o in-
dependent totally positive units such that e--1 mod. v for all non-
archimedean primes v in S. By E we denote the group of units
generated by the . Then by Unit Theorem, E can be regarded as a
lattice in W. By m we shall always understand a module whose prime
factors are contained in S. Let E denote the group of elements of
E which are congruent to 1 mod. m. Let V--Re+... +Re be a
vector space over R of dimension r with the ordinary topology, and
let f be the linear map of V into W such that f(e)-e. We put L
=Ze+... + Ze-f-(E) and L-f-(E). For a subset X of V, f(X)
is an open neighbourhood of 0 if and only if X is open and contains
one o the lattices L. Hence the completion I?V of W is isomorphic
to lim VILe. Therefore we have

Ds=R (lira VILe) T.

Proposition. DS/Hs is uniquely 1-divisible.
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Proof. Since DS/HS-IV/W and W is uniquely divisible, it is
sufficient to show that l is uniquely/-divisible. It is clear that l is
divisible. By Corollary o Theorem 3, or each module m there exists
a module m’ such that E,E, hence L,IL. This means that
IZ-lim V/L has no/-torsion part. Q.E.D.

Corollary.

I(Z/2Z), if i is even and 1-2,
H(G’DS)(1)-(0, if i is odd or 1=/=2,

where is the number of ramified archimedean primes of k.
Theorem 4.

archimedean one.
Let S be a set of rational primes, including the
Then we have

D-R (V / Z) T
and

(DS)* -R Q z%
where VS=R Zp in which Z is imbedded diagonally and Qs is the

pSo

additive group of S-inSegers of Q with the discrete topology.
Proof. By Corollary of Theorem 3, the filters {Lm} and {mL} are

cofinal. Therefore we have lim V/L lira V/mL- (lim R/mZ).
Since (lim R/mZ)*=Qs=(VS/Z)*, the theorem is proved.
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