
No. 9] Proc. Japan Acad., 44 (1968) 901

204. On the Product of M.Spaces. II

By Tadashi ISHII, Mitsuru TSUDA, and Shin-ichi KUNUGI
Utsunomiya University
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1o This is the continuation of our previous paper [1].* The
purpose of this paper is to prove the following theorems which are
related to the product of M-spaces and to the countable product of the
spaces belonging to .

Theorem 1.1. If X belongs to , then the product X Y is an
M-space for any M-space Y.

Corollary 1.2. If X is an M-space which satisfies one of the
following conditions, then the product X Y is also an M-space for
any M-space Y.

a ) X satisfies the first axiom of countability.
(b) X is locally compact.
( c ) X is paracompact.
Since an M-space X which satisfies one of conditions (a), (b), and

(c) belongs to by [1, Theorem 2.2], this corollary is a direct con-
sequence of Theorem 1.1.

Theorem 1.3. If Xn, n=l, 2,..., are the spaces belonging to, then the product ]-[ X also belongs to .
Corollary 1.4. If X, n-l, 2, ., are M-spaces each of which

satisfies the first axiom of countability, then the product [ X is also

an M-space satisfying the first axiom of countability.

I each space X satisfies the first axiom of countability, then the

product I-[ X satisfies the first axiom o countability, oo. Hence

this corollary ollows from Theorem 1.3 directly.

If each space X is a paracompact M-space, then the product I-[ X
t----1

is also a paracompact M-space (cf. K. Morita [3, Theorem 6.4]). How-

ever or locally compact M-spaces X, the product [I X is not locally

compact in general. For example, let Xn, n-l, 2, ..., be the spaces

of real numbers with the usual topology. Then the product [I X

All spaces are assumed to be Hausdorff.
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belongs to , while it is not locally compact (cf. [2, Theorem 19 in
Chap. 5]).

2. Lemmas. Lemma 2.1. Let {lt} and {} be normal sequences

of open coverings of the spaces X and Y, respectively. If we put
-{Ux V IU e 1%, V e !} for each i, then (} is a normal sequence

of open coverings of the product X x Y.
Proof. Let W- UX V e +, where U e 1+ and V e /. Then

St(W, /)-St(U, I/)xSt(V, /1). Since St(U, I/)U’ and
St(V, /)V’ for some U’elI and for some V’e, we have
St(W, /)c U’X V’ e , which shows that} is a normal sequence
of open coverings of X x Y.

Lemma 2.2. For each positive integer n, let {l%(n, i) i- 1, 2, }
be a normal sequence of open coverings of a space Xn. If we put

II= U, x X U X ]] Xn U e II(], i), ]=1, ..., i},

then {1%} is a normal sequence of open coverings of the product X.
=1

Proof. Let V- Ux x U+ x I] X e 1%+, where U e lI(], i + 1),

]-l,...,i+l. Then we have
St(V, 1%+)- St(U, 1%(1, i / 1)) x... St(U+, lt(i / 1, i + 1)) x 1-[ Xn.

n>+l

Since St(U, lI(], i/ 1)) U) for some U. e 1%(], i), St(V, lI+) is con-
tained in UIx... x Ux X e 1t. Hence 11+1 is a star refinement

of lI for each i. Thus we complete the proof.
Lemma 2.3. If X is a compact space, and if Y is a countably

compact space, then She product X Y is countably compact.
This lemma is due to J. Novk [4, Theorem 5].
3. Proof of Theorem 1.1. Let {1/} be a normal sequence of open

coverings of X satisfying Condition (.), and let {} be a normal se-
quence of open coverings of Y satisfying Condition (M0). If we put
-{U V]U e 1I, V e !} for each i, then by Lemma 2.1 {} is a normal
sequence of open coverings of X x Y. Let {z} be a sequence of points
of X Y such that z e St(z0, ) for each i and for some fixed point z0
of X Y. Let us put z-(x, y)eXY and z0-(x0, Y0)e X x Y. Since
x e St(x0, 1%) for each i, there exists a subsequence {x()} of {x} which
has the compact closure in X. On the other hand, since y e St(y0, )
for each i, any subsequence of {y} has an accumulation point in
;] St(y0, ) and nowhere else, which shows that the closure of {y} in
Y is countably compact. Hence the closure of {y(} in Y is also
countably compact. Consequently, by Lemma 2.3 {xix{y()} is
countably compact. This shows that {z()} has an accumulation point
in X x Y, and hence X x Y is an M-space. Thus we complete the proof.
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Proof of Theorem 1.3. Let us put X- X, and let {lI(n, i)li

-1, 2,...) be a normal sequence of open coverings of X satisfying
Condition (.). Then, as is shown in Lemma 2.2, we can construct a
normal sequence {1I) of open coverings of X. Now let {x(i) li-= 1, 2, }
be a sequence of points of X such that x(i)e St(x, 1I)for each i and
for some fixed point x of X. We denote the k-th coordinate of a point
xofXbyx. If we put

x(i)-(x(i), x.(i), ..;, x(i), ...), x(i) e X,
then {x(i)li-1, 2,...} is a sequence of points of X such that x(i)
e St(x, 1I(1, i)). Hence by Condition (.) there exists a subsequence
{x(n)li=l, 2,...} of {x(i)} which has the compact closure in X,
where we may assume that 2<=nn,/, i-1, 2,.... Next we con-
sider a sequence {x.(nx)li=l, 2,...} of points of X. Since x(n)
e St(x, 1I(2, i)) or each i, there exists a subsequence {x.(n.)li= 1, 2, }
of {x(n)} which has the compact closure in X., where we may assume
that 3=<nn,/x, i= 1, 2, .. By repeating these processes, we can
select a subsequence {x(n)li-1, 2, ...} of {x(n_,)} which has the
compact closure n X for each k_>_2, where we may assume that
k+ l<=nn./, i=1, 2, .... Now consider the subsequence {x(n)lk

1, 2, } of {x(i) li=1, 2, }. Then we can prove that the closure
o {x(n)lk= 1, 2, in X is compact. In fact, if we put
K {x(n)}, K-{x(n)} U {x(n) n n}, k- 2, 3, ...,

then {x(n)lk=l, 2,...} is contained in a compact set K-V[ K.
Since K is compact in X, the closure of {x(n)lk=l, 2,...} in X is
compact. This completes the proo2.
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