200. An Extension of Wild's Sum for Solving Certain Non-linear Equation of Measures

By Shigeru Tanaka
Department of Mathematics, Osaka University, Osaka

(Comm. by Zyoiti Suetuna, m. J. A., Nov. 12, 1968)

1. Let S be a compact space with the second countability axiom. Let \mathfrak{F} be the set of all signed measures on the topological Borel field of S with finite total variation, and let $\mathfrak{B}_{s}\left(\right.$ resp. $\left.\mathfrak{W}_{p}\right)$ be the subset of \mathfrak{W} of all substochastic (resp. probability) measures. In \mathfrak{F}, we introduce the topology of weak convergence. Consider a non-linear equation :

$$
\begin{equation*}
\frac{d u(t)}{d t}=B[u(t)]-u(t), \quad u(0+)=f, \tag{1}
\end{equation*}
$$

where the initial value f and the solution $u(t)$ are in \mathfrak{B}_{s} and $B[u]$ is given by the formula :

$$
\begin{equation*}
B[u]=\sum_{n=1}^{\infty} a_{n} B_{n}[u, \cdots, u], \tag{2}
\end{equation*}
$$

for given $\left\{a_{n}\right\}_{n=1}^{\infty}$ and $\left\{B_{n}\right\}_{n=1}^{\infty}$ such that i) a_{n} is a non-negative real number, $a_{1}<1$ and $\sum_{n=1}^{\infty} a_{n}=1$, ii) B_{n} is a mapping from \mathfrak{W}^{n} to \mathfrak{W}, multilinear, continuous and maps \mathfrak{W}_{p}^{n} into \mathfrak{W}_{p}, for each $n \geqq 1$, where \mathfrak{W}^{n} and \mathfrak{W}_{p}^{n} mean the n-fold direct products of the spaces \mathfrak{W} and \mathfrak{B}_{p} respectively. This equation was considered by H. Tanaka [6] and T. Ueno [7], in a slightly different form, to extend the result of McKean [5] and Johnson [4] concerning the propagation of chaos. In [6], the following condition :

$$
\begin{equation*}
\int_{1-\varepsilon}^{1} \frac{d \xi}{\xi-\sum_{n=1}^{\infty} a_{n} \xi^{n}}=+\infty \quad \text { for any } \quad \varepsilon>0 \tag{3}
\end{equation*}
$$

is assumed to prove the propagation of chaos. This condition seems closely related to the condition of the uniqueness of the solution of (1). In this paper, as a remark to [6], we give an extension of Wild's sum for the solution of the equation (1) and investigate the relation between the condition (3) and the uniqueness of the solution of (1).

[^0]2. To give an extension of Wild's sum [7], we define the set of trees inductively in the following manner. T_{1} is the set of only one element (α) where α is an symbol called "surmit". If T_{k} is defined for each $k \leqq n$, then T_{n+1} is defined by :
\[

$$
\begin{equation*}
T_{n+1}=\bigcup_{m=1}^{\infty} \underset{\substack{1 \leq n_{1}, \ldots, n_{m} \leq n \\ n_{1}+\ldots+n_{m}=n}}{ }\left\{p=\left(p_{1}, \cdots, p_{m}\right) ; p_{1} \in T_{n_{1}}, \cdots, p_{m} \in T_{n_{m}}\right\}, \tag{4}
\end{equation*}
$$

\]

and $T=\bigcup_{n=1}^{\infty} T_{n}$, where unions mean direct sum. This notation is one representation of the branching trees as in the following :

$$
T_{8} \ni(\underbrace{(((\alpha))}_{p_{1}}, \underbrace{(\alpha)}_{p_{2}},(\underbrace{(\alpha),((\alpha)))}_{p_{3}}) \leftrightarrow \varliminf_{0}^{1}
$$

Because of this definition, we can "inductively" define any notation $N(p)$ depending on $p \in T$, if we define initially $N((\alpha))$ and then define $N(p)$ by means of $N\left(p_{1}\right), \cdots, N\left(p_{m}\right)$ in the case $p=\left(p_{1}, \cdots, p_{m}\right)$. So, define $f^{p} \in \mathfrak{B}_{s}$ for $f \in \mathfrak{W}_{s}$ and $G^{p}(t) \in C([0, \infty))$ in the following :

$$
\begin{align*}
& \left\{\begin{array}{l}
f^{(\alpha)}=f, \\
f^{p}=B_{m}\left[f^{p_{1}}, \cdots, f^{p_{m}}\right], \quad \text { if } \quad p=\left(p_{1}, \cdots, p_{m}\right),
\end{array}\right. \tag{5}\\
& \left\{\begin{array}{l}
G^{(\alpha)}(t)=e^{-t}, \\
G^{n}(t)
\end{array}\right. \\
& \left\{G^{p}(t)=a_{m} \int_{0}^{t} e^{-(t-s)} G^{p_{1}}(s) \cdots G^{p_{m}}(s) d s, \quad \text { if } \quad p=\left(p_{1}, \cdots, p_{m}\right) .\right.
\end{align*}
$$

The convergence of the right hand side of (6) is easily seen if we prove inductively that $0 \leqq G^{p}(t) \leqq 1$. Then we can define an extension of Wild's sum :

$$
\begin{equation*}
u(t, f)=\sum_{p \in T} G^{p}(t) f^{p} \tag{7}
\end{equation*}
$$

3. For $u, v \in \mathfrak{F}$, we define $u \geqq v$ if and only if $u=v+w$ for some non-negative measure w. Then we have

Theorem 1. (a) $u(t, f)$ is the minimal solution of (1). (b) If $f(S)<1$, then (1) has unique solution (c). If the condition (3) is satisfied, then (1) has unique solution for any $f \in \mathfrak{B}_{p}$. (d) If the condition (3) is not satisfied, then the solution of (1) is not unique for some $f_{0} \in \mathfrak{W}_{p}$.

Before proving this theorem, we prove the following three lemmas:

Lemma 1. (1) is equivalent to the following integral equation:

$$
\begin{equation*}
u(t)=e^{-t} f+\int_{0}^{t} e^{-(t-s)} B[u(s)] d s .^{2)} \tag{8}
\end{equation*}
$$

Proof. Let (8) be satisfied. The differentiability of $u(t)$ is clear by the right hand side of (8), and differentiating (8) in t we get (1). Conversely let (1) be satisfied. The continuity of $u(t)$ is clear, and integrating by parts we have
2) In equation (8), we assume the continuity of $u(t)$.

$$
\int_{0}^{t} e^{-(t-s)} u^{\prime}(s) d s=u(t)-e^{-t} f-\int_{0}^{t} e^{-(t-s)} u(s) d s
$$

so we get (8).
Lemma 2. Let $u_{n}(t)$ be a sequence of successive approximation of (8) :

$$
\begin{align*}
& u_{0}(t)=e^{-t} f \\
& u_{n+1}(t)=e^{-t} f+\int_{0}^{t} e^{-(t-s)} B\left[u_{n}(s)\right] d s, \quad \text { for } \quad n \geqq 0 . \tag{9}
\end{align*}
$$

Then $u_{u}(t)$ increases to $u(t, f)$, as $n \uparrow+\infty$.
Proof. Define the length $L(p)$ of the tree $p \in T$ by $L((\alpha))=0$ and $L(p)=\max _{1 \leq i \leq m} L\left(p_{i}\right)+1$ if $p=\left(p_{1}, \cdots, p_{m}\right)$, and let $T(n)=\{p ; L(p) \leqq n\}$. It is clear that the set $T(n)$ is increasing and $\bigcup_{n=0}^{\infty} T(n)=T$. So it is sufficient to prove $u_{n}(t)=\sum_{p \in T(n)} G^{p}(t) f^{p}$. If we notice that $T(n+1)=T(0) \cup$ $\bigcup_{m=1}^{\infty}\left\{p=\left(p_{1}, \cdots, p_{m}\right) ; p_{1}, \cdots, p_{m} \in T(n)\right\}$, then the equality is proved inductively by using the following formula:

$$
\begin{aligned}
& \sum_{p \in T(n+1)} G^{p}(t) f^{p} \\
= & e^{-t} f+\sum_{m=1}^{\infty} \sum_{p_{1}, \cdots, p_{m} \in T(n)} a_{m} \int_{0}^{t} e^{-(t-s)} G^{p_{1}}(s) \cdots G^{p_{m}}(s) B_{m}\left[f^{p_{1}}, \cdots, f^{p_{m}}\right] d s \\
= & e^{-t} f+\int_{0}^{t} e^{-(t-s)} B\left[\sum_{p \in T(n)} G^{p}(t) f^{p}\right] d s .
\end{aligned}
$$

Lemma 3. $v(t)=u(t, f)(S)$ is the minimal solution of an equation:

$$
\begin{equation*}
\frac{d v(t)}{d t}=\sum_{n=1}^{\infty} a_{n} v(t)^{n}-v(t), \quad v(0+)=f(S), \quad 0 \leqq v(t) \leqq 1 \tag{10}
\end{equation*}
$$

Proof. By the definition of $B[u]$, we have $B[u](S)=\sum_{n=1}^{\infty} a_{n} u(S)^{n}$, so from (8) $v(t)$ satisfies

$$
\begin{equation*}
v(t)=e^{-t} f(S)+\int_{0}^{t} e^{-(t-s)} \sum_{n=1}^{\infty} a_{n} v(s)^{n} d s \tag{11}
\end{equation*}
$$

which is equivalent to (10). It is easily seen that $u_{n}(t)(S)$ is a sequence of successive approximation of (11) and $\lim _{n \rightarrow \infty} u_{n}(t)(S)=v(t)$, so $v(t)$ is the minimal solution of (10).

Proof of Theorem 1. It is clear that $u(t, f)$ satisfies (8), so also (1). Let $u(t)$ be any solution of (1). By (9) and Lemma 1, we have inductively $u_{n}(t) \leqq u(t)$, so $u(t, f) \leqq u(t)$ by Lemma 2 , proving (a). It is well known that (10) has unique solution if and only if $f(S)<1$, or $f(S)=1$ and the condition (3) is satisfied [2]. So, b) and c) is proved by Lemma 3 if we notice that $u \geqq v$ with $u(S)=v(S)$ implies $u=v$. By Schauder-Tychonov theorem [1], there is $f_{0} \in \mathfrak{W}_{p}$ such that $f_{0}=B\left[f_{0}\right]$. By this initial condition, there is a trivial solution $u(t) \equiv f_{0}$ of (1).

If (3) is not satisfied, $v(t)$ is not trivial, that means $u(t) \neq u(t, f)$.
q.e.d.
4. Let $\hat{T}=T \cup\{\Delta\}$, where Δ is an extra point. Define the number $n(p)$ of surmits of the tree $p \in T$ by $n((\alpha))=1$ and $n(p)=\sum_{i=1}^{m} n\left(p_{i}\right)$ if $p=\left(p_{1}, \cdots, p_{m}\right)$. For each $p \in T$ such that $n(p)=n$ and $q_{1}, \cdots, q_{n} \in T$, $p\left(q_{1}, \cdots, q_{n}\right)$ is defined to be a tree given by replacing i-th (α) in p with q_{i} for each $i=1, \cdots, n$. If for some $i(1 \leqq i \leqq n), q_{i}=(\overbrace{(\alpha), \cdots,(\alpha)}^{j})$ with $j \geqq 1$ and $q_{k}=(\alpha)$ for $k \neq i$, then we write $p(i, j)$ instead of $p\left(q_{1}, \cdots, q_{n}\right)$.

Let $T_{p}=\left\{p\left(q_{1}, \cdots, q_{n}\right) ; q_{1}, \cdots, q_{n} \in T\right\}$ and $\hat{T}_{p}=T_{p} \cup\{\Delta\} . \quad C_{0}(\hat{T})$ (resp. $C_{0}\left(\hat{T}_{p}\right)$) is the set of all continuous functions on \hat{T} (resp. \hat{T}_{p}) vanishing at Δ, where the topology of \hat{T} is that of one-point compactification of the discrete topological space T. Let $X=\left\{X_{t}, P_{p} ; p \in \hat{T}\right\}$ be a minimal Markov chain on \hat{T} with Δ as a trap, having the generator :

$$
\begin{equation*}
\mathscr{G} F(p)=\sum_{1 \leq i \leq n(p)} a_{j} F(p(i, j))-n(p) F(p), \quad \text { for } \quad F \in C_{0}(T), p \in T \text {. } \tag{12}
\end{equation*}
$$

We may assume that X is a Hunt process with a Feller semi-group. Further, if we transform the state space of X by $n(p): \hat{T} \rightarrow\{1,2, \ldots$ $\cdots, \infty\}$, then X becomes the Galton-Watson process of continuous time parameter with generator :

$$
\widetilde{\mathscr{S}} F(n)=n \sum_{j \geq 1} a_{j} F(n+j-1)-n F(n), \quad \text { for } \quad F \in C_{0}(\{0,1, \cdots, \infty\}) \text {. }
$$

So, $P_{p}\left(e_{\Delta}=+\infty\right)=1$ if and only if (3) is satisfied, where $e_{4}=\inf \left\{t: X_{t}\right.$ $=\Delta\}$ [2]. But in the following, we do not assume (3).

Theorem 2. $u(t, f)=E_{(\alpha)}\left(f^{X_{t}}\right)$, where $f^{4}=0$.
Proof. Assume that the following Lemma 4 is proved. Then, for $p=\left(p_{1}, \cdots, p_{m}\right) \in T$, and for first jumping time τ_{1},

$$
\begin{gathered}
P_{(\alpha)}\left(X_{t}=p\right)=E_{(\alpha)}(\left.P_{X_{\tau_{1}}}\left(X_{t-s}=p\right)\right|_{s=\tau_{1}} ; X_{\tau_{1}}=((\overbrace{(\alpha), \cdots,(\alpha)}^{m}), \tau_{1} \leqq t) \\
=a_{m} \int_{0}^{t} e^{-(t-s)} \prod_{k=1}^{m} P_{(\alpha)}\left(X_{s}=p_{k}\right) d s,
\end{gathered}
$$

so, we can prove inductively that $G^{p}(t)=P_{(\alpha)}\left(X_{t}=p\right)$, that is, $u(t, f)$ $=E_{(\alpha)}\left(f^{X_{t}}\right)$.

Lemma 4. For $p \in T$ such that $n(p)=n$ and $q_{1}, \cdots, q_{n} \in T$,

$$
\begin{equation*}
P_{p}\left(X_{t}=p\left(q_{1}, \cdots, q_{n}\right)\right)=\prod_{k=1}^{n} P_{(\alpha)}\left(X_{t}=q_{k}\right) \tag{13}
\end{equation*}
$$

Proof. Property (13) is an analogy to the branching property, so the proof is essentially the same as in [3]. For each $p \in T$ such that $n(p)=n$ and $f_{1}, \cdots, f_{n} \in C_{0}(\hat{T})$, we define $F\left(f_{1}, \cdots, f_{n}\right) \in C_{0}\left(\hat{T}_{p}\right)$ by $F\left(f_{1}, \cdots, f_{n}\right)(q)=\prod_{k=1}^{n} f_{k}\left(q_{k}\right)$ if $q=p\left(q_{1}, \cdots, q_{n}\right) \in T_{p}$. For each $p \in T$, $q \in T_{p}, r \geqq 0$, and $f \in C_{0}\left(T_{p}\right)$, we define $T_{t}^{(r)} f(q)=E_{q}\left(f\left(X_{t}\right) ; \tau_{r} \leqq t<\tau_{r+1}\right)$, where τ_{r} is the r-th jumping time of X_{t}. Then, it is sufficient to prove the following equality :

$$
\begin{equation*}
T_{t}^{(r)} F\left(f_{1}, \cdots, f_{n}\right)(q)=\sum_{\substack{r_{1}, \ldots, r_{n} \geq 0 \\ r_{1}+\cdots+r_{n}=r}} F\left(T_{t}^{\left(r_{1}\right)} f_{1}, \cdots, T_{t}^{\left(r_{n}\right)} f_{n}\right)(q) . \tag{14}
\end{equation*}
$$

Before to prove (14), we give the following two lemmas.
Lemma 5. Let $\psi(q ; d s, l)=P_{q}\left(\tau_{1} \in d s, X_{\tau_{1}}=l\right)$. Then for each $p \in T$ such that $n(p)=n, q=p\left(q_{1}, \cdots, q_{n}\right) \in T_{p}$ and $l=p\left(l_{1}, \cdots, l_{n}\right)$ $\in T_{q} \subset T_{p}$,

$$
\begin{equation*}
\psi(q ; d s, l)=\sum_{k=1}^{n} \psi\left(q_{k} ; d s, l_{k}\right) \prod_{\substack{h \neq k \\ 1 \leqq n \leqq n}} p_{q_{h}}\left(\tau_{1}>s\right) \delta_{\left\{q_{h}\right\}}\left(l_{h}\right) \tag{15}
\end{equation*}
$$

Proof. If $n(q)=m$ and $l=q\left(l_{1}, \cdots, l_{m}\right)$, then

$$
\begin{align*}
\psi(q ; d s, l) & =m e^{-m s} d s \sum_{i=1}^{m} \sum_{j=1}^{\infty} \frac{1}{m} a_{j} \delta_{\{q(i, j)\}}(l) \tag{16}\\
& =\sum_{i=1}^{m} \psi\left((\alpha) ; d s, l^{i}\right) \prod_{\substack{j \neq i \\
1 \leqq j \leq m}} P_{(\alpha)}\left(\tau_{1}>s\right) \delta_{\{(\alpha)\}}\left(l^{j}\right) .
\end{align*}
$$

But it is clear that $l_{k}=q_{k}\left(l^{M_{k}+1}, l^{M_{k}+2}, \ldots, l^{M_{k+1}}\right)$ where $M_{k}=\sum_{i=1}^{k-1} n\left(q_{i}\right)$, so, by applying (16) inversely,

$$
=\sum_{k=1}^{n} \psi\left(q_{k} ; d s, l_{k}\right) \prod_{\substack{h \neq k \\ 1 \leqq h \leqq n}} P_{q_{h}}\left(\tau_{1}>s\right) \delta_{\left\{q_{h} h\right.}\left(l_{h}\right) .
$$

Lemma 6. Let $g^{(r)}(s)=T_{s}^{(0)} T_{t-s}^{(r)} f(q)$. Then, for $r \geqq 1$,

$$
\begin{equation*}
g^{(r)}(s)=\int_{s}^{t} \sum_{i \in T_{q}} T_{t-\theta}^{(r-1)} f(l) \psi(q ; d \theta, l) \tag{17}
\end{equation*}
$$

Proof. By the strong Markov property,

$$
\begin{aligned}
g^{(r)}(s) & =E_{q}\left(f\left(X_{t}\right) ; \tau_{r} \leqq t<\tau_{r+1}, s<\tau_{1}\right) \\
& =E_{q}\left(\left.E_{X_{\tau_{1}}}\left(f\left(X_{t-\theta}\right) ; \tau_{r-1} \leqq t-\theta<\tau_{r}\right)\right|_{\theta=\tau_{1}} ; s<\tau_{1} \leqq t\right) \\
& =\int_{s}^{t} \sum_{l \in T_{q}} T_{t-s}^{(r-1)} f(l) \psi(q ; d s, l)
\end{aligned}
$$

Proof of (14). We prove (14) by induction for r. The case of $r=0$ is clear if we notice that $T_{t}^{(0)} f(q)=f(q) P_{q}\left(\tau_{1}>t\right)$. Let (14) be proved in the case of r. Then, by Lemmas 4 and 5 ,

$$
\begin{aligned}
& T_{t}^{(r+1)} \boldsymbol{F}\left(f_{1}, \cdots, f_{n}\right)(q)=\int_{0}^{t} \sum_{l \in T_{q}} T_{t-s}^{(r)} F\left(f_{1}, \cdots, f_{n}\right)(l) \psi(q ; d s, l) \\
& \quad=\sum_{\substack{r_{1}, \ldots, r_{n} \geq 0 \\
r_{1}+\cdots+r_{n}=r}} \sum_{k=1}^{n} \int_{0}^{t} \sum_{l_{k} \in T_{q_{k}}} T_{t-s}^{\left(r_{k}\right)} f_{k}\left(l_{k}\right) \psi\left(q_{k} ; d s, l_{k}\right) \prod_{\substack{n \neq k \\
1 \leqq \neq k \leq n}} T_{s}^{(0)} T_{t-s}^{\left(r_{n}\right)} f_{n}\left(q_{n}\right) \\
& \quad=\sum_{\substack{r_{1}, \ldots, r_{n} \geq 0 \\
r_{1}+\cdots+r_{n}=r_{+1}}} \prod_{k=1}^{n} g_{k}^{r_{k} k}(0)
\end{aligned}
$$

so, the case of $r+1$ is proved.

References

[1] N. Dunford and J. T. Schwartz: Linear Operators. I. Interscience (1958).
[2] T. E. Harris: The Theory of Branching Processes. Springer (1963).
[3] N. Ikeda, M. Nagasawa, and S. Watanabe: On branching Markov processes. Proc. Japan Acad., 41, 816-821 (1965).
[4] D. P. Johnson: On a class of stochastic processes and its relationship to infinite particle gases. Trans. Amer. Math. Soc., 132, 275-295 (1968).
[5] H. P. McKean Jr.: An exponential formula for solving Boltzmann equation for a Maxwellian gas. J. Combinatorial Theory, 2, 358-382 (1967).
[6] H. Tanaka: Propagation of chaos for certain Markov processes of jump type with non-linear generators (to appear).
[7] T. Ueno: A class of Markov processes with non-linear, bounded generators (to appear).
[8] E. Wild: On Boltzmann's equation in the kinetic theory of gases. Proc. Cambridge Phil. Soc., 47, 602-609 (1951).

[^0]: 1) In this paper, the continuity, differentiability and integral of $u(t)$ are in the sense of topology of weak convergence in \mathfrak{M}. In equation (1), we assume the differentiability of $u(t)$ as a matter of course.
