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1. Let S be a compact space with the second countability axiom.
Let be the set of all signed measures on the topological Borel field
of S with finite total variation, and let (resp. ) be the subset of

of all substochastic (resp. probability) measures. In , we intro-
duce the topology of weak convergence. Consider a non-linear equa-
tion"

( 1 du(t) -B[u(t)]-u(t), u(O+)-f,1
dt

where the initial value f and the solution u(t)are in and B[u] is
given by the formula"

( 2 ) B[u]--], anBn[u, "", u],
n----1

for given (a}= and {Bn}= such that i) an is a non-negative real num-

ber, a<l and , an--l, ii) B is a mapping from 3 to 3, multi-

linear, continuous and maps into , for each n>=l, where
and mean the n-fold direct products of the spaces 3 and re-
spectively. This equation was considered by H. Tanaka [6] and T.
Ueno [7], in a slightly different form, to extend the result of McKean
[5] and Johnson [4] concerning the propagation of chaos. In [6], the
following condition"

(3) I: d$ =+c forany e>O,
--an

=I

is assumed to prove the propagation o chaos. This condition seems
closely related to the condition of the uniqueness of the solution of
(1). In this paper, as a remark to [6], we give an extension of
Wild’s sum or the solution of the equation (1) and investigate the re-
lation between the condition (3) and the uniqueness of the solution of
().

1) In this paper, the continuity, differentiability and integral of u(t) are in
the sense of topology o2 weak convergence in Y)l. In equation (1), we assume the
differentiability of u(t) as a matter of course.
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2. To give an extension of Wild’s sum [7], we define the set of
trees inductively in the following manner. T is the set of only one
element (c) where c is an symbol called "surmit". If T is defined
for each k_<_n, then T/ is defined by"

( 4 ) T+-- [_) (P--(P, ’’’, Pro); P e Tn, ..., Pm e T},
m=l ln...,nmn

l+,..+nw%=

and T-- J T, where unions mean direct sum. This notation is one
=I

representation of the branching trees as in the following"

T 9 ((()), (), ((q), (()))) -
Because of this definition, we can "inductively" define any nota-

tion N(p) depending on p e T, if we define initially N((c)) and then
define N(p) by means of N(p), ..., N(p) in the case p-(p, ...,
So, define f e s for f e s and G(t) e C([0, oo)) in the following"

(5) f(")--f
f--B[f, ..., f], if p--(p,...,p),
G(.)(t)-e-,

(6)
G(t)=a e--"G()...G()d, if P-(Pl," ", P).

The convergence of the right hand side of (6) is easily seen if we
prove inductively that 0<G(t)_<_l. Then we can define an extension
of Wild’s sum"

( 7 ) u(t, f)-- , G’(t)f’.

3. For u, v e , we define u>=v if and only if u=v+w for some
non-negative measure w. Then we have

Theorem 1. (a) u(t, f) is the minimal solution of (1). (b) If
f(S) 1, then (1) has unique solution (c). If the condition (3) is satisfied,
then (1) has unique solution for any f e . (d) If the condition (3)
is not satisfied, then the solution of (1) is not unique for some fo e .

Before proving this theorem, we prove the ollowing three lem-
mas

Lemma 1. (1) is equivalent to the following integral equation"

(8) u(t)--e-tf +:e--)B[u(s)]ds.)
Proof. Let (8) be satisfied. The differentiability of u(t) is clear

by the right hand side of (8), and differentiating (8) in t we get (1).
Conversely let (1) be satisfied. The continuity of u(t) is clear, and
integrating by parts we have

2) In equation (8), we assume the continuity of u(t).
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oe-(-,)ut(s)ds- u(t) e-f oe- (-8)u(s)ds

so we get (8).
Lemma 2, Let un(t) be a sequence of successive approximation

of (8):
Uo($)-- e-*f

(9) u+l(t)=e-*f+:e-(*-’)B[u(s)]ds, or n>=0.

Then u(t) increases to u(t, f), as n
Proof. Define the length L(p) of the tree p e T by L((a))=0 and

L(p) max L(p,) + 1 if p (p, ..., p), and let T(n) {p L(p) <=n}. It

is clear that the set T(n) is increasing and ) T(n)= T. So it is suffi-

cient to prove Un(t)=
peT(n)

[_3 {p--(p, ..., p); p, ..., p e T(n)}, then the equality is proved in-

ductively by using the following formula"

E G(t)f
p T(n+l)

=e-f+ , , a e-(-8)G(s)... G(s)B[f, ..., f]ds
m=l :Pl,’",Pme T(n)

--e-if+ [’e-(t-’)B[ , GP(t)fp]ds.
J0 peT(n)

Lemma 3. v(t)=u(t, f)(S) is the minimal solution of an equa-
tion"

(10) dr(t) , any(t)
_

v(t), v(O +)---- f(S), 0 <- v(t) <_ 1.
dt

Proof. By the definition of B[u], we have B[u](S)-, au(S)n,
so from (8) v(t) satisfies

(11) (t) e-f(S) + e--" , ()d,
which is equivalent to (10). It is easily seen that (t)(S) is a se-
quence ot successive approximation of (11) and lira (t)(S)=(t), so

(t) is the minimal solution of (10).
Proof of Theorem 1. It is clear that u(t, f) satisfies (8), so also

(1). Let u(t) be any solution of (1). By (9) and Lemma 1, we have
inductively u(t)<=u(t), so u(t, f)<__u(t) by Lemma 2, proving (a). It
is well known that (10) has unique solution if and only if f(S)1, or
f(S)= 1 and the condition (3) is satisfied [2]. So, b) and c) is proved
by Lemma 3 if we notice that u>_v with u(S)--v(S) implies u=v. By
Schauder-Tychonov theorem [1], there is f0 e such that fo--B[fo].
By this initial condition, there is a trivial solution u(t)=_fo of (1).
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If (3) is not satisfied, v(t) is not trivial, that means u(t)u(t, f).
q.e.d.

4. Let -T [J {}, where z is an extra point. Define the number

n(p) of surmits of the tree p e T by n(())-I and n(p)--, n(p,) if
i--1

p (p, ..., p). For each p e T such that n(p)-n and q, ..., q e T,
p(q,..., q) is defined to be a tree given by replacing i-th (a) in p

with q, for each i=1,..., n. If for some i (l <__ i _<_ n) q,-((),..., ())
with ]__>1 and q-(a) for /i, then we write p(i, ]) instead of
P(q, "", qn).

Let T-- ip(q, ..., qn) q, "", q e T} and -T [J {A}. C0()
(resp. C0()) is the set of all continuous unctions on (resp. ) van-
ishing at /, where the topology of is that of one-point compacti-
ficatio of the discrete topological space T. Let X-{Xt, P;p e } be
a minimal Markov chain on with A as a trap, having the generator"
(12) (R)F(p)- aF(p(i, ]))--n(p)F(p), for F e Co(T), p e T.

ltn(:p)

We may assume that X is a Hunt process with a Feller semi-group.
Further, if we transform the state space of X by n(p)’T(1, 2,...
.., c}, then X becomes the Galton-Watson process of continuous

time parameter with generator’
(R)F(n)=n , aF(n+]--l)--nF(n), for F e C0((0, 1, ..., c}).

So, P(e-+ c)-1 if and only if (3) is satisfied, where e-inf (t’X
-A} [2]. But in the following, we do not assume (3).

Theorem 2. u(t, f)-E(.)(fxO, where f-0.
Proof. Assume that the ollowing Lemma 4 is proved. Then,

or p--(p, ..., p,) e T, and for first jumping time v,

P(.)(X-p)-E(.)(Px(X_,-p)[,. X-((),..., (a)), vgt)

= e-- I-[ P(X-)d,
so, we can prove inductively that G(t)-P(.)(Xt=p), that is, u(t, f)

Lemma 4. For p e T such that n(p)-n and ql, "’, qn e T,
(13) Pp(Xt=p(ql, ", qn))-- P(,)(Xt=q).

Proof. Property (13) is an analogy to the branching property,
so the proo is essentially the same as in [3]. For each p e T such that
n(p)=n and f, ..., f e Co(T), we define F(A, ..., f) e Co(T) by

F(f, ..., f)(q)- I-[ f(q) if q-P(ql, "", qn) e Tp. For each p e T,
q e T, r:>0, and f e Co(T), we define Tr)f(q)-Eq(f(Xt)
where v is the r-th jumping time of Xt. Then, it is sufficient to
prove the following equality"
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(14) T>F(A, f)(q) F(T>fl r
rl, "",rnO
rl+...+rn=r

Before to prove (14), we give the ollowing two lemmas.
Lemma 5. Let (q ds, 1)=Pq( ds, X:=l). Then or each

p T such that n(p)=n, q=p(q, ..., qn) T and lp(ll, ...,
Tq Tp,

(15) +(q; ds, 1)= +(q ds, 4) Pqa(Tx>
k=l

lAn

Proof. If n(q)=m and l=q(l,..., l), then

(16) W(q ds, l)=me-ds .= = aq(,)(1)

, 4X((a) ds, ) I-I P(=)(rl > s)+)(lO.
t=l

lj_m

But it is clear that 4-q(l/1, l/, ..., *) where M- , n(q),

so, by applying (16) inversely,

(q ds, 4) I-[ P%(rl s)(q,(l).
lkn

Lemma 6. Let g(r)(s)-- T)"(% ()._f q Then, for

t (r-l)(17) g)(s)-- qT___ f(1)(q dO, 1).

Proof. By the strong Markov property,
g()(s)--Eq(f(Xt) rt< rr+l, s< ’1)

=Eq(Ex(f(X_) v_lt--Ov)l=

t-, f(1)+(q ds, 1).

Proof of (14). We prove (14) by induction or r.
r--0 is clear i we notice that T)f(q)-f(q)P(vl)t).
proved in the ease o r. Then, by Lemmas 4 and 5,

.-,+1, "’, fn)(q)-- T_>,F(f, ..., f)(1)p(q; ds, l)
q, T_f(4)4z(q ds, 4) T) :t-Tc>+r(q)

rl,..., n_0 k=l 1 Tqkr+ ...+rn=r l_k_n

V[ g(0)
rl+ +rn=r+l

so, the case o r+ 1 is proved.

The case of
Let (14) be
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