
No. 10] Proc. Japan Acad., (1968) 1013

228. On a Theorem on Commutative Decompositions

By Kiyoshi ISKI

(Comm. by Kinjir6 KUNUGI, M. J. A., Dec. 12, 1968)

J. R. Biichi [1] introduced a useful notion called a pair of func-
tions (f,f’). Let E, E’ be sets, and let f :2--,2s’, f’ 2s’--2 be func-
tions. Then (f, f’) is a pair of functions, if A’(f(A)=5 implies
f’(A’)A=, where AE, A’E’. As shown by J. R. Biichi [1], an
equivalence relation or a decomposition of E is defined by a pair of
functions (f, f’).

Let (f, f’) be a pair of functions from 2 to 2. If 1) A f(A),
2) f(A)-- if(A), and 3) f(f(A)) f(A) for every A E, then (f, f’) or

f is called an equivalence relation.
In my note [2], we discussed some classical results on mappings

by the notion of pair of functions. In this Note, we shall consider
Sik results on the equivalence relations [3].

Theorem. Let f, g be two equivalence relations on a set E. The
following propositions are equivalent.

1) The composition fg is an equivalence relation.

for any subsets A, B of E, f(A)( g(B)-- implies g(A) f(B)2)

3) for any subsets A, B of E, f(A) g(B)=/= implies g(A) f(B)

4) for any subset A of E, fg(A)=gf(A).
Proof. It is obvious that the conditions 2) and 3) are equivalent.
To prove 3)@4), let x e fg(A), then

x f(g(A)) -.Hence f(x) g(A) #- 5. From 3), we have g(x) f(A) #- , which means
x egf(A). Therefore fg(A)cgf(A). Similarly we have gf(A)
cfg(A).

To prove 4)3), suppose that f(A) g(B)#-, then A fg(B)#-.
By 4), we have A gf(B) #- , and then g(A) f(B) #- .

Therefore 3) and 4) are equivalent.
Next we shall prove 1)2).
Let f(A) g(B)=, then we have

A fg(B)=.
Therefore (fg)’(A)( B=. Since fg is the equivalence relation, (fg)’
fg. Hence fg(A) B=, and then g(A) f(B)=, which shows 3).

Finally we show 4)@1). We must verify the three conditions of
an equivalence relation.
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1) Since f, g are two equivalence relations, for any subsets A, B
of E, then

A g(A)c f(g(A)).
2) To prove (fg)’=fg, consider

(fg)’(A) gl B=,
then we have

A fg(B)=.
By the condition 4), we have

A VI gf(B)=.
Since f, g are the equivalence relations, we have g(A)VI f(B)= and
then fg(A) B-. Therefore fg(A) (fg)’(A).

Conversely, let fg(A)B=, then by the condition 4), we have
gf(A) B . This implies (fg)’(A) B . Hence (fg)’(A) fg(A).

3) (fg)((fg)(A)) fg(A) ollows from the following relation. By
the condition 4), we have

fgfg(A) ffgg(A) fgg(A) ggf(A) gf(A) fg(A).
Therefore we complete the proof of Theorem.
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