25. Note on Embeddings of Lens Spaces

By Ryosuke Nakagawa
Tokyo University of Education
(Comm. by Kinjirô KunugI, m. J. A., Feb. 12, 1969)

An embedding or immersion of M^{n} in $R^{2 n-k}$ is said to have efficiency k (here M^{n} is an n-dimensional manifold). In [1] and [2] Mahowald and Milgram gave excellent results on efficiency of projective spaces. Their methods are applicable for lens spaces and by using the results in [3] and [4], we can obtain some results on efficiency of embeddings of lens spaces.

Let p be any odd integer ≥ 3 and q_{0}, \cdots, q_{n} be integers relatively prime to p. The cyclic group Γ of order p with generator t acts on the sphere $S^{2 n+1} \subset C^{n+1}$ as follows;

$$
t^{k}\left(z_{0}, \cdots, z_{n}\right)=\left(\theta^{k q} z_{0}, \cdots, \theta^{k q_{n}} z_{n}\right)
$$

where $\left(z_{0}, \cdots, z_{n}\right)$ is a complex $(n+1)$-tuple representing a point of $\mathrm{S}^{2 n+1}$ and $\theta=\exp (2 \pi i / p)$. The orbit manifold $S^{2 n+1} / \Gamma$ is a lens space L^{n} $=L^{n}\left(p ; q_{0}, \cdots, q_{n}\right)$.

Let $L^{m}=L^{m}\left(p ; q_{0}, \cdots, q_{m}\right) \subset L^{n+m+1}=L^{n+m+1}\left(p ; q_{0}, \cdots, q_{n+m+1}\right) \quad$ be the subspace with the last $n+1$ coordinates 0 , while $L^{n}=L^{n}\left(p ; q_{m+1}, \cdots\right.$ \cdots, q_{n+m+1}) is the subspace having the first $m+1$ coodinates 0 . A vector bundle $L^{n+m+1}-L^{n}$ over L^{m} will be denoted by $L_{n+m+1, m}$.

Let a be an integer such that $a=4 b+c, 0 \leqq c \leqq 3$, then $j(a)=8 b+2^{c}$, and if $d+1=2^{a} e$ with e odd we set $K(d)=j(a)-1$.

Proposition 1. Suppose there are differentiable embeddings $f: L^{n} \subset R^{\alpha}, g: L^{m} \subset R^{\beta}, \quad h: L_{n+m+1, m} \subset R^{\beta+\sigma}$ so that either (i) $\beta+\sigma$ $>2(2 m+1)$ or (ii) $\beta+\sigma=2(2 m+1)$ and $2(n+1) \leqq K(2 m+1)$, then if the normal bundle η_{f} of the embedding f has σ trivial sections, there is a topological embedding $L^{n+m+1} \subset R^{\alpha+\beta+1}$.

This can be proved by the same way in [1].
Proposition 2. There are embeddings $f: L^{1} \subset R^{6}, g: L^{3} \subset R^{14}, h: L^{n}$ $\subset R^{2(2 n+1)}(n \neq 1,3)$ and $\eta_{f}, \eta_{g}, \eta_{h} h a v e 2,4, K(2 n+1)$ sections respectively.

This is proved by Theorem 2.2 in [1] and (4.1) in [4].
Proposition 3.
(1) If $2 n \geqq m, L_{n+m+1, m} \subset R^{3 m+2 n+3+\epsilon}, \varepsilon=\frac{1}{2}\left(1+(-1)^{m}\right)$.
(2) If $2 n<m, L_{n+m+1, m} \subset R^{4 m+3}$.
(3) If $2 n<m$ and $2(n+1) \leqq K(2 m+1), L_{n+m+1, m} \subset R^{4 m+2}$.

It is shown in [3] that $L_{n+m+1, m} \subseteq R^{3 m+2 n+3+\varepsilon}$ and hence we have (1)
and (2). (3) is proved by similar way in [1]. (In [3], L^{n} means $L^{n}(p ; 1, \cdots, 1)$ and p is an odd prime. However, the same conclusions hold for $L^{n}=L^{n}\left(p ; q_{0}, \cdots, q_{n}\right)$ where p is an odd integer $\geqq 3$.)

Theorem. Suppose that L^{n} embeds with efficiency k. We have
(1) If $n>4, k \geqq 2$.
(2) If $n>8, k \geqq 3$.
(3) If $n>12, k \geqq 4$.
(4) If $n>13, k \geqq 6$.
(5) For any $n, k>5 \log _{3} \frac{2 n+9}{35}+3$.

Proof. (1), (2), (3) are obtained directly from Propositions 1~3. By Theorem 4 in [3] we can obtain (4) from (3). By using Theorem 3 in [3], we have that

$$
\begin{aligned}
& \text { if } \frac{19}{2} 3^{\alpha-1}-\frac{9}{2} \leqq n<\frac{9}{2} 3^{\alpha}-\frac{9}{2}, k \geqq 5 \alpha-3 \text {, } \\
& \text { if } \frac{9}{2} 3^{\alpha}-\frac{9}{2} \leqq n<\frac{35}{2} 3^{\alpha-1}-\frac{9}{2}, k \geqq 5 \alpha-2 \text {, } \\
& \text { if } \frac{35}{2} 3^{\alpha-1}-\frac{9}{2} \leqq n<\frac{37}{2} 3^{\alpha-1}-\frac{9}{2}, k \geqq 5 \alpha-1 \text {, and } \\
& \text { if } \frac{37}{2} 3^{\alpha-1}-\frac{9}{2} \leqq n<\frac{19}{2} 3^{\alpha}-\frac{9}{2}, k \geqq 5 \alpha+1 \text {. }
\end{aligned}
$$

In any case, $k>5 \log _{3} \frac{2 n+9}{35}+3$ holds. By similar way in [1] and using only Propositions $1 \sim 3$, we have that $k>2 \log _{2}(n+2)-\log _{2} 18$. ${ }^{1)}$ Moreover, by using (3.3) in [3], we have that $k>7 \log _{3} \frac{2 n+17}{43}+3$.

References

[1] M. Mahowald and R. J. Milgram: Embedding real projective spaces. Ann. of Math., 87, 411-422 (1968).
[2] -: Embedding projective spaces. Bull. Amer. Math. Soc., 73, 644-646 (1967).
[3] R. Nakagawa: Embeddings of projective spaces and lens spaces. Sci. Rep. Tokyo Kyoiku Daigaku Sec. A, 9, 170-175 (1967).
[4] D. Sjerve: Vector bundles over orbit manifolds (to appear).

[^0]
[^0]: 1) F. Uchida has announced to the author that he obtained by similar methods a result that $k \geqq 2\left[\log _{2}(n+1)\right]-7$.
