33. On Certain Mixed Problem for Hyperbolic Equations of Higher Order

By Kazuo Asano and Taira Shirota
Department of Mathematics, Hokkaido University
(Comm. by Kinjirô Kunugi, m. J. A., March. 12, 1969)

1. Introduction. Let Ω be the half-space of $\boldsymbol{R}^{n}:\left\{\left(x_{1}, x_{2}, \cdots, x_{n}\right) \mid\right.$ $\left.x_{n}>0\right\}$, and Γ be a boundary of Ω.

Consider the hyperbolic equation

$$
\begin{equation*}
L u=\left(\frac{\partial^{2 m}}{\partial t^{2 m}}+a_{1}(x, D) \frac{\partial^{2 m-1}}{\partial t^{2 m-1}}+\cdots+a_{2 m}(x, D)\right) u+B\left(x, D, \frac{\partial}{\partial t}\right) u=f \tag{1.1}
\end{equation*}
$$ where $a_{k}(x, D)=\sum_{|\alpha|=k} a_{\alpha}(x) D^{\alpha}, D_{j}=\frac{1}{\sqrt{-1}} \frac{\partial}{\partial x_{j}}, \alpha=\left(\alpha_{1}, \cdots, \alpha_{n}\right),|\alpha|=\alpha_{1}$ $+\cdots+\alpha_{n}, D^{\alpha}=D_{1}^{\alpha_{1}} \cdots D_{n}^{\alpha_{n}}$, and B is an arbitrary differential operator of order $(2 m-1)$.

We assume that all coefficients are sufficiently differentiable and bounded with their derivatives in \boldsymbol{R}^{n}.

Our aim of the present note is to assert the following
Theorem 1. We assume that $a_{\alpha_{1} \cdots \alpha_{n}}\left(x^{\prime}, 0\right)=0$ when α_{n} is odd. Let all the roots $\tau_{i}(x, \xi),(i=1, \cdots, 2 m)$ with respect to τ of the equation $\tau^{2 m}+a_{1}(x, \xi) \tau^{2 m-1}+\cdots+a_{2 m}(x, \xi)=0$ be pure imaginary, distinct and not zero, uniformly. Then for any $f(t, x) \in C^{1}\left([0, T] ; L^{2}(\Omega)\right)$ and any initial data $\left(u(0, x), \frac{\partial u}{\partial t}(0, x), \cdots, \frac{\partial^{2 m-1} u}{\partial t^{2 m-1}}(0, x)\right) \in \mathscr{D}_{i}(i=1,2)$, there exists a unique solution u of the equation (1.1) satisfying boundary conditions

$$
\begin{equation*}
\left.u\right|_{\Gamma}=\left.\Delta u\right|_{\Gamma}=\cdots=\left.\Delta^{m-1} u\right|_{\Gamma}=0, \tag{1.2}
\end{equation*}
$$

or

$$
\begin{equation*}
\left.\frac{\partial}{\partial x_{n}} u\right|_{\Gamma}=\left.\frac{\partial}{\partial x_{n}} \Delta u\right|_{\Gamma}=\cdots=\left.\frac{\partial}{\partial x_{n}} \Delta^{m-1} u\right|_{\Gamma}=0 . \tag{1.3}
\end{equation*}
$$

The solution satisfies $\left(u(t, x), \frac{\partial u}{\partial t}(t, x), \cdots, \frac{\partial^{2 m} u}{\partial t^{2 m}}(t, x)\right) \in C^{0}([0, T]$; $\left.\mathscr{D}_{i} \times L^{2}(\Omega)\right)$, where $\mathscr{D}_{1}=D\left(\Lambda_{-}^{2 m}\right) \times \cdots \times D\left(\Lambda_{-}\right), \mathscr{D}_{2}=D\left(\Lambda_{+}^{2 m}\right) \times \cdots \times D\left(\Lambda_{+}\right)$. In the case of Dirichlet type boundary condition (1.2), we consider \mathscr{D}_{1}, and in the case of Neumann type boundary condition (1.3), we consider \mathscr{D}_{2}. The definitions of Λ_{+}, Λ_{-}are represented in the following section.

It is not difficult to show that from the considerations in the proof of Theorem 1 it implies the theorems obtained by S. Mizohata [5]
and by S. Miyatake [4]. The method of proof of Theorem 1 is based on singular integral operators with boundary conditions developed below and on Leray's one [3].

The detailed treatment and other interesting results shall be published elsewhere.
2. Singular integral operators with boundary conditions.

Definition 1. Let $A(\xi)$ be any bounded function in \boldsymbol{R}^{n}, homogeneous of degree zero. For $u(x) \in L^{2}\left(\boldsymbol{R}_{+}^{n}\right)$, we define
where

$$
\begin{gathered}
A(D) u \equiv F^{+\prime}\left(A(\xi) F^{+} u(\xi)\right), \quad A_{2}(D) u \equiv F^{-\prime}\left(A(\xi) F^{-} u(\xi)\right), \\
\left(F^{+} u\right)(\xi)=\int_{-\infty}^{\infty} \int_{0}^{\infty} e^{-i x^{\prime} \xi^{\prime}} \cos \left(x_{n} \xi_{n}\right) u\left(x^{\prime}, x_{n}\right) d x^{\prime} d x_{n}, \\
\left(F^{-} u\right)(\xi)=\int_{-\infty}^{\infty} \int_{0}^{\infty} e^{-i x^{\prime} \xi^{\prime}} \sin \left(x_{n} \xi_{n}\right) u\left(x^{\prime}, x_{n}\right) d x^{\prime} d x_{n}, \\
\left(F^{+\prime} u\right)(\xi)=\frac{1}{(2 \pi)^{n-1}} \cdot \frac{2}{\pi} \int_{-\infty}^{\infty} \int_{0}^{\infty} e^{i x^{\prime} \xi^{\prime}} \cos \left(x_{n} \xi_{n}\right) u\left(x^{\prime}, x_{n}\right) d x^{\prime} d x_{n}, \\
\left(F^{-\prime} u\right)(\xi)=\frac{1}{(2 \pi)^{n-1}} \cdot \frac{2}{\pi} \int_{-\infty}^{\infty} \int_{0}^{\infty} e^{i x^{\prime} \xi^{\prime}} \sin \left(x_{n} \xi_{n}\right) u\left(x^{\prime}, x_{n}\right) d x^{\prime} d x_{n}, \\
\boldsymbol{R}^{n} \ni x=\left(x_{1}, \cdots, x_{n-1}, x_{n}\right)=\left(x^{\prime}, x_{n}\right), \\
\boldsymbol{R}_{+}^{n}=\left\{x \in \boldsymbol{R}^{n} ; x_{n}>0\right\}=\Omega, \\
x^{\prime} \xi^{\prime}=\sum_{j=1}^{n-1} x_{j} \xi_{j}, \quad i=\sqrt{-1} .
\end{gathered}
$$

Definition 2. We define the following positive self-adjoint operators in $L^{2}\left(\boldsymbol{R}_{+}^{1}\right)$ or $L^{2}\left(\boldsymbol{R}^{1}\right)$: we set

$$
\begin{aligned}
H_{+}^{2}=-\frac{d^{2}}{d x^{2}}, & D\left(H_{+}^{2}\right)=\left\{u \in H^{2}\left(\boldsymbol{R}_{+}^{1}\right) ; \frac{d u}{d x}(0)=0\right\} \\
H_{-}^{2}=-\frac{d^{2}}{d x^{2}}, & D\left(H_{-}^{2}\right)=H^{2}\left(\boldsymbol{R}_{+}^{1}\right) \cap H_{0}^{1}\left(\boldsymbol{R}_{+}^{1}\right) \\
H^{2}=-\frac{d^{2}}{d x^{2}} . & D\left(H^{2}\right)=H^{2}\left(\boldsymbol{R}^{1}\right)
\end{aligned}
$$

and set $H_{+}=\left(H_{+}^{2}\right)^{\frac{1}{2}}, H_{-}=\left(H_{-}^{2}\right)^{\frac{1}{2}}, H=\left(H^{2}\right)^{\frac{1}{2}}$. Then we have that $D\left(H_{+}\right)$ $=H^{1}\left(\boldsymbol{R}_{+}^{1}\right), D\left(H_{-}\right)=H_{0}^{1}\left(\boldsymbol{R}_{+}^{1}\right), D(H)=H^{1}\left(\boldsymbol{R}^{1}\right)$.

Definition 3. We set

$$
\begin{array}{cc}
\Lambda_{+}=-\left(\Delta^{\prime}+H_{+}^{2}\right)^{\frac{1}{2}}, \quad \Lambda_{-}=\left(-\Delta^{\prime}+H_{-}^{2}\right)^{\frac{1}{2}}, & \Lambda=\left(-\Delta^{\prime}+H^{2}\right)^{\frac{1}{2}}, \\
D\left(\Lambda_{+}\right)=H^{1}\left(\boldsymbol{R}_{+}^{n}\right), & D\left(\Lambda_{-}\right)=H_{0}^{1}\left(\boldsymbol{R}_{+}^{n}\right), \\
\text { where } \quad \Delta^{\prime}=\sum_{i=1}^{n-1} \frac{\partial^{2}}{\partial x_{i}^{2}} .
\end{array}
$$

It follows that

$$
\Lambda_{+} u=\left.\Lambda \widetilde{u}\right|_{x_{n}>0} \text { for } u(x) \in D\left(\Lambda_{+}\right), \quad \Lambda_{-} u=\left.\Lambda \tilde{u}\right|_{x_{n}>0} \text { for } u(x) \in D\left(\Lambda_{-}\right),
$$

where

$$
\begin{aligned}
& \tilde{u}\left(x^{\prime}, x_{n}\right)=\left\{\begin{array}{l}
u\left(x^{\prime}, x_{n}\right) \text { for } x_{n}>0, \\
u\left(x^{\prime},-x_{n}\right) \text { for } \quad x_{n}<0,
\end{array}\right. \\
& \tilde{u}\left(x^{\prime}, x_{n}\right)=\left\{\begin{array}{lll}
u\left(x^{\prime}, x_{n}\right) & \text { for } \quad x_{n}>0 \\
-u\left(x^{\prime},-x_{n}\right) & \text { for } & x_{n}<0 .
\end{array}\right.
\end{aligned}
$$

In what follows we consider only Λ_{+}, as we can consider Λ_{-}similar to Λ_{+}.

Definition 4. $a(x, \xi) \in \Xi_{4}^{\infty}$ means that
$a(x, \xi) \in C_{x, \xi}^{4, \infty}\left(\overline{\boldsymbol{R}_{+}^{n}} \times\left(\boldsymbol{R}^{n}-\{0\}\right)\right), \quad a(x, \lambda \xi)=a(x, \xi)$ for $\lambda>0$, and for every integer $s(\geq 0)$, there exists $M_{s}(a)(<\infty)$ such that

$$
\sum_{\substack{| || | \leq|\leq 4\\| \nu \mid \leq s}} \sup _{\substack{|k|=1 \\ x \in \overline{\boldsymbol{R}}_{+}^{n}}}\left|\left(\frac{\partial}{\partial x}\right)^{\mu}\left(\frac{\partial}{\partial \xi}\right)^{\nu} a(x, \xi)\right| \leq M_{s}(\alpha) .
$$

Theorem 2. Let $a(x, \xi), b(x, \xi) \in \Xi_{4}^{\infty}$. We set singular integral operators $a(x, D), b(x, D)$ with symbol $a(x, \xi), b(x, \xi)$, respectively, that is, for $u(x) \in L^{2}\left(\boldsymbol{R}_{+}^{n}\right), a(x, D) u=F^{+\prime}\left(\alpha(x, \xi) F^{+} u(\xi)\right)$. Then, for $u(x)$ $\in D\left(\Lambda_{+}\right)$, we obtain the following estimates.
i) $\left\|(a(x, D) b(x, D)-b(x, D) a(x, D)) \Lambda_{+} u\right\|_{x_{n}>0}$

$$
\leq c\left(M_{2\left(\left[\frac{3}{2} n\right]+3\right)}(a) \cdot M_{2(n+1)}(b)+M_{2(n+1)}(a) M_{2\left(\left[\frac{3}{2} n\right]+3\right)}(b)\right)\|u\|_{x_{n}>0},
$$

ii) $\left\|\left(a(x, D) \Lambda_{+}-\Lambda_{+} a(x, D)\right) u\right\|_{x_{n}>0} \leq c M_{2(n+1)}(a)\|u\|_{x_{n}>0}$,
iii) $\left\|\left(a(x, D)^{*}-a^{\#}(x, D)\right) \Lambda_{+} u\right\|_{x_{n}>0} \leq c M_{2\left(\left[\frac{3}{2} n\right]+3\right)}(\alpha)\|u\|_{x_{n}>0}$,
iv) $\left\|(a(x, D) b(x, D)-(a \circ b)(x, D)) \Lambda_{+} u\right\|_{x_{n}>0}$

$$
\leq c M_{2\left(\left[\frac{3}{2} n\right]+3\right)}(a) M_{2(n+1)}(b)\|u\|_{x_{n}>0} .
$$

Here $\|u\|_{x_{n}>0}^{2}=\int_{R_{+}^{n}}|u|^{2} d x, \quad a^{\#}(x, D),(a \circ b)(x, D)$ are singular integral operators with symbol $\overline{a(x, \xi)}, a(x, \xi) b(x, \xi)$, respectively, c depends only on dimension n and [] denotes the Gauss symbol.

Definition 5. \mathcal{A} is the algebra generated by $\alpha(x, \xi) \in \Xi_{4}^{\infty}$ with the property: $a\left(x, \xi^{\prime}, \xi_{n}\right)=a\left(x, \xi^{\prime},-\xi_{n}\right)$ and $f(x) \frac{\xi_{n}}{|\xi|}$ with the property: $f\left(x^{\prime}, 0\right)=0$ and $f(x) \in C^{4}\left(\overline{\boldsymbol{R}}_{+}^{n}\right)$. For $\alpha(x, \xi)=\sum_{i=1}^{m} a_{i}(x, \xi) f_{i}(x) \frac{\xi_{n}}{|\xi|}$, we associate with the singular integral operator $\alpha(x, D)$ as follows:

$$
\alpha(x, D) u=\left.\sum_{i=1}^{m} F^{\prime}\left(f_{i}(x) \frac{\xi_{n}}{|\xi|} a_{i}(x, \xi) F \tilde{u}\right)\right|_{x_{n}>0}, \quad \text { for } u \in L^{2}\left(\boldsymbol{R}_{+}^{n}\right),
$$

where F is Fourier transformation and F^{\prime} its inverse.
Theorem 3. For the symbols $\alpha(x, \xi), \beta(x, \xi) \in \mathfrak{A}$, the statements of Theorem 2 are also valid.

The proof of Theorem 1 is a direct consequence of Theorem 3 from which it is seen that the proof is accomplished by the familiar method with the use of singular integral operator with respect to the Cauchy problem for hyperbolic operators ([1], [3], [5]-[7]).

References

[1] Calderón, A. P., and A. Zygmund: Singular integral operators and differential equations. Amer. J. Math., 79, 901-921 (1957).
[2] Friedrichs, K. O., and P. D. Lax: Boundary value problems for first order operators. Comm. Pure and Appl. Math., 18, 355-388 (1965).
[3] Leray, J.: Hyperbolic Equations. Princeton Lecture Note (1952).
[4] Miyatake, S.: On some mixed problems for fourth order hyperbolic equations. Proc. Japan Acad., 44 (4), 257-262 (1968).
[5] Mizohata, S.: Quelques problèmes au bord, du type mixte, pour des équations hyperbolique. Collège du France, 23-60 (1966-1967).
[6] Shirota, T.: On mixed problem for hyperbolic equations (in Japanese). Symposium on Functional Analysis held at Research Institute for Mathematical Sciences, Kyoto University on September in 1968.
[7] -: On Cauchy problem for linear partial differential equations with variable coefficients. Osaka Math. J., 19, 43-60 (1957).

