51. On Some Homogeneous Boundary Value Problems Bounded Below

By Daisuke FUJIWARA
Department of Mathematics, University of Tokyo
(Comm. by Zyoiti SUETUNA, M. J. A., April 12, 1969)

§ 1. Introduction. Let Ω be a compact oriented Riemannian n-space with smooth boundary Γ . Let A be a linear partial differential operator on Ω of order 2m. We assume A is strongly elliptic, that is, there is a constant C>0 such that, for any x in Ω and for any non zero vector \mathcal{E} cotangent to Ω at x, we have

$$C^{-1}|\xi|^{2m} \leq \text{Re } \sigma_{2m}(A)(x,\xi) \leq C|\xi|^{2m},$$

where $\sigma_{2m}(A)$ is the principal symbol of A. We consider normal systems $\{B_r\}_{r\in R}$, $R=(r_1,r_2,\cdots,r_m)$, of m boundary operators B_{r_j} . r_j is the order of B_{r_j} . We assume $r_j < 2m$ for any $j=0,1,\cdots,m$. The problem to be considered is

Problem 1. Characterize those couples $\{A, \{B_r\}_{r \in R}\}$ which give, with some constants $1/2 \ge \varepsilon \ge 0$, $C, \beta > 0$, the estimate

(1)
$$\operatorname{Re}((A+\beta)u, u)_{L^{2}(Q)} \ge C \|u\|_{H^{m-\epsilon}(Q)}^{2}$$

for all u in $H_R^{2m}(\Omega) = \{u \in H^{2m}(\Omega); B_r u | r = 0, \text{ for any } r \in R\}.$

Here $H^s(\Omega)$ denotes the Sobolev space on Ω of order s, $\| \ \|_{H^s(\Omega)}$ is its norm and $(\ ,\)_{L^2(\Omega)}$ is the inner product in $L^2(\Omega)$.

If $1/2 > \varepsilon \ge 0$, the problem was treated in far stronger form in [3]. In this note we concern with the case $\varepsilon = 1/2$. So the problem is

Problem 1'. Characterize those couples $\{A, \{B_r\}_{r\in R}\}$ which give, with some constants $C, \beta > 0$, the estimate

(2)
$$\operatorname{Re}((A+\beta)u, u)_{L^{2}(\Omega)} \ge C \|u\|_{H^{m-1/2}(\Omega)}^{2}$$

for all u in $H_R^{2m}(\Omega)$.

We assume the following hypothesis (H) that was proved in the case $0 \le \varepsilon < 1/2$ necessary for the estimate (1) to hold. (See [3] and [6].) (H) The set R coincides with one of the R_j 's defined by $R_j = (0, 1, \cdots, m-j-1, m, m+1, \cdots, m+j-1), 1 \le j \le m$. Under this hypothesis we give a necessary and sufficient condition for the estimate (2) to hold.

Proofs are omitted. Detailed discussions will be published elsewhere.*

§2. Results. We denote by ν the interior unit normal to Γ and

^{*)} This work was done during the author's stay in Paris. He expresses his hearty thanks to Professor J. L. Lions for his constant encouragement.

by D_n the normal derivative $-i\frac{\partial}{\partial \nu}$ multiplied by $-i=-\sqrt{-1}$. S_j is the complement of R_j in the set $\{0,1,2,\cdots,2m-1\}$. Then $B_r,\ r\in R_j$ can be written as

$$B_{r} = D_{n}^{r} - \sum_{\substack{\rho \in S_{j} \\ \rho < r}} B_{r-\rho}^{r} D_{n}^{\rho},$$

where $B_{r-\rho}^r$ is a pseudo-differential operator on Γ of order $\leq r-\rho$. Let $\Lambda=(1-\Delta')^{1/2}$ where Δ' is the Laplace-Beltrami operator associated with the metric on Γ . Then Λ^k is an isomorphism from $H^s(\Gamma)$ to $H^{s-k}(\Gamma)$. Λ^* denotes the formal adjoint of Λ .

We choose and fix α so large that we can solve uniquely the problem:

$$(A+A^*+2lpha)v\!=\!0 \ D_n^k v|_{arGamma} =\! A^k \phi_k, \quad m\!-\!1\!\geq\! k\!\geq\! m\!-\!j, \ D_n^k v|_{arGamma} =\! 0, \quad m\!-\!j\!-\!1\!\geq\! k\!\geq\! 0,$$

and obtain the estimates, for any $s \in R$,

$$(5) \qquad C^{-1} \sum_{k=m-j}^{m-1} \|\phi_k\|_{H^{s-1/2}(\varGamma)}^2 \leq \|v\|_{H^{s}(\varOmega)}^2 \leq C \sum_{k=m-j}^{m-1} \|\phi_k\|_{H^{s-1/2}(\varGamma)}^2.$$

Here and hereafter we denote by C different constants >0 in different occurrences.

Now we fix $B = \{B_r\}_{r \in R_j}$. We decompose any u in $H_B^{2m}(\Omega)$ into sum of two functions v and w:

$$(6) u=v+w,$$

where

(7)
$$(A+A^*+2\beta)v=0$$
 on Ω , $D_n^kv|_{\varGamma}=D_n^ku|_{\varGamma}$, $0\leq k\leq m-1$, and $D_n^kw|_{\varGamma}=0$, $0\leq k\leq m-1$. This implies that $D_n^kv|_{\varGamma}=0$ for $0\leq k\leq m-j-1$. We set $D_n^ku|_{\varGamma}=A^k\varphi_k$, $m-j\leq k\leq m-1$. Let $H_B^s(\Omega)$ be the closure of $H_B^{2m}(\Omega)$ in $H^s(\Omega)$. Then $H_B^m(\Omega)=\{u\in H^m(\Omega): D_n^ku|_{\varGamma}=0,\ 0\leq k\leq m-j-1\}$. The decomposition (6) is a topological decomposition of $H_B^m(\Omega)$. (See [5].) Now we take any u in $H_B^{2m}(\Omega)$. Then using the boundary condition $B_{\varGamma}u|_{\varGamma}=0$ and the decomposition (6), we can find pseudo-differential operators $H_{p,q}$ on \varGamma of order $2m-1$, $m-j\leq p$,

(8)
$$\operatorname{Re}((A+\beta)u, u)_{L^{2}(\Omega)}$$

$$= \operatorname{Re}((A+\beta)w, w)_{L^{2}(\Omega)} + \sum_{n, \alpha = m-1}^{m-1} (H_{pq}(\beta)\varphi_{q}, \varphi_{p})_{L^{2}(\Gamma)}.$$

(See [2].)

 $q \leq m-1$, such that

Let T be the 1 dimensional circle= $R/2\pi Z$. We consider the elliptic operator $\tilde{A}=A+D_s^{2m}$, $s\in T$, on $\Omega\times T$ and boundary operators $\{B_r\}_{r\in R_j}$ on $\Gamma\times T$. $H_s^s(\Omega\times T)$ denotes the closure in $H^s(\Omega\times T)$ of $H_B^{2m}(\Omega\times T)=\{f\in H^{2m}(\Omega\times T): B_rf|_{\Gamma\times T}=0,\ r\in R_j\}$. Decomposition corresponding to (6) holds for functions in $H_B^{2m}(\Omega\times T)$, that is, for any f in $H_B^{2m}(\Omega\times T)$,

(9)
$$f = g + h, \quad (\tilde{A} + \tilde{A}^* + 2\beta)g = 0 \text{ on } \Omega \times T,$$
$$D_n^k g|_{\Gamma \times T} = D_n^k f|_{\Gamma \times T}, \quad 0 \le k \le m - 1.$$

We set $D_n^k f|_{\Gamma \times T} = \tilde{A}^k \phi_k$, $m-j \leq k \leq m-1$, where $\tilde{A} = (1-\Delta' + D_s^2)^{1/2}$. Just as we did above, we can find pseudo-differential operators $\tilde{H}_{pq}(\beta)$ on $\Gamma \times T$ of order 2m-1 such that for any f in $H_B^{2m}(\Omega \times T)$

(10)
$$\operatorname{Re}((\tilde{A} + \beta)f, f)_{L^{2}(\mathcal{Q} \times T)} = \operatorname{Re}((\tilde{A} + \beta)h, h)_{L^{2}(\mathcal{Q} \times T)} + \sum_{p,q=m-j}^{m-1} (\tilde{H}_{pq}(\beta)\phi_{q}, \phi_{p})_{L^{2}(\Gamma \times T)}.$$

Our first result is

Theorem 1. Each of the following four propositions are equivalent to the other:

- (i) There are some β_1 , $C_1>0$ such that the estimate (2) holds for any $u\in H^{2m}_B(\Omega)$.
 - (ii) There are some β_2 , $C_2>0$, such that the estimate

(11)
$$\operatorname{Re}((\tilde{A} + \beta_2)f, f)_{L^2(\mathcal{Q} \times T)} \ge C_2 \|f\|_{H^{m-1/2}(\mathcal{Q} \times T)}^2$$

holds for any f in $H_B^{2m}(\Omega \times T)$.

(iii) There are some constants β_3 , $C_3>0$ such that the estimate

(12)
$$\sum_{p,q=m-j}^{m-1} (H_{pq}(\beta_3)\varphi_q,\varphi_p)_{L^2(\Gamma)} \ge C_3 \sum_{p=m-j}^{m-1} \|\varphi_p\|_{H^{m-1}(\Gamma)}^2$$

holds for any φ_{m-j} , φ_{m-j+1} , \cdots , $\varphi_{m-1} \in H^{m-1/2}(\Gamma)$.

(iv) There are some constants γ , β_4 , $C_4>0$ such that the estimate

(13)
$$\sum_{p,q=m-j}^{m-1} (\tilde{H}_{pq}(\gamma)\phi_{q},\phi_{p})_{L^{2}(\Gamma\times T)} + \beta_{4} \sum_{p=m-j}^{m-1} \|\phi_{p}\|_{H^{-1/2}(\Gamma\times T)}^{2}$$

$$\geq C_{4} \sum_{p=m-j}^{m-1} \|\phi_{p}\|_{H^{m-1}(\Gamma\times T)}^{2}$$

holds for any ϕ_{m-j} , ϕ_{m-j+1} , \cdots , ϕ_{m-1} in $H^{m-1/2}(\Gamma \times T)$.

Remark 1. In the case $0 \le \varepsilon < 1/2$ the estimate holds with some β , C > 0, if and only if, with some γ , β , C > 0, the estimate

(14)
$$\sum_{p,q=m-j}^{m-1} (H_{pq}(\gamma)\varphi_q, \varphi_p)_{L^2(\Gamma)} + \beta \sum_{p=m-j}^{m-1} \|\varphi_p\|_{H^{-1/2}(\Gamma)}^2$$

$$\geq C \sum_{p=m-j}^{m-1} \|\varphi_p\|_{H^{m-1/2-\varepsilon}(\Gamma)}^2$$

holds for any $\varphi_{m-1}, \dots, \varphi_{m-1}$ in $H^{m-1/2}(\Gamma)$.

We consider pseudo-differential operators $\tilde{H}_{pq}(\gamma)$, $m-j \leq p$, $q \leq m-1$, of order 2m-1 defined on $\Gamma \times T$ and satisfying the property (iv) of Theorem 1.

The property (iv) of Theorem 1 can be localized.

Theorem 2. Assume that there exists a family of finite number of real functions $\{\mu_k(x)\}_{k=1}^N$ in \mathcal{D} $(\Gamma \times T)$ satisfying

- (i) $\sum \mu_k(x,s)^2=1$,
- (ii) for any ϕ_{m-j} , ϕ_{m-j+1} , \cdots , $\phi_{m-1} \in \mathcal{D}$ ($\Gamma \times T$) and for any k the following estimate holds:

(15)
$$\sum_{p,q=m-j}^{m-1} (\tilde{H}_{pq}(\gamma)\mu_k \phi_q, \mu_k \phi_p)_{L^2(\Gamma \times T)} + \beta \sum_{p=m-j}^{m-1} \|\mu_k \phi_p\|_{H^{-1/2}(\Gamma \times T)}^2 \\ \geq C \sum_{p=m-j}^{m-1} \|\mu_k \phi_p\|_{H^{m-1}(\Gamma \times T)}^2.$$

Then for any ϕ_{m-j} , ϕ_{m-j+1} , \cdots , $\phi_{m-1} \in \mathcal{D}$ $(\Gamma \times T)$ the estimate (13) holds with some β_4 , C_4 and $\gamma_4 > 0$.

Let Ω be any open set (not necessarily connected) in \mathbb{R}^n . Let Q_{rs} , $m-j \leq r$, $s \leq m-1$, be pseudo-differential operators of order 1 defined in Ω . $q_{rs}(x,\xi) \sim \sum_{j=0}^{\infty} q_{rs}^{j}(x,\xi)$ denote the symbol of Q_{rs} . We assume the matrix $(q_{rs}^{0}(x,\xi))_{rs}$ of the principal symbols of Q_{rs} is Hermitian. Then we have

Theorem 3. The following two properties are equivalent:

(i) For any compact set K in Ω , there are constants C_0 and $C_1>0$ such that, for any $\phi_{m-j}, \phi_{m-j+1}, \cdots, \phi_{m-1} \in \mathcal{D}(K)$,

(16) Re
$$\sum_{r,s=m-j}^{m-1} (Q_{rs}\phi_s,\phi_r)_{L^2(\mathcal{Q})} + C_1 \sum_{r=m-j}^{m-1} \|\phi_r\|_{H^{-1/2}(\mathcal{Q})}^2 \ge C_0 \sum_{r=m-j}^{m-1} \|\phi_r\|_{H^0(\mathcal{Q})}^2$$
.

(ii) For any compact set K_1 in Ω , there exist constant C>0, integer N>0 and a function $\varepsilon(\xi)$ with $\varepsilon(\xi)\to 0$ when $|\xi|\to\infty$ such that, for any $x\in K_1$, $\psi_{m-j}, \dots, \psi_{m-1}\in \mathcal{D}(\mathbf{R}^n)$,

$$(17) \quad \operatorname{Re} \sum_{r,s=m-j, \ |\alpha|+|\beta| \leq 2}^{m-1} \sum_{\substack{|\xi|^{(|\beta|-|\alpha|)/2} \\ \alpha!\beta!}} q_{rs(\alpha)}^{0(\beta)}(x,\xi) \int_{\mathbb{R}^{n}} (iD_{y})^{\beta} \psi_{s}(y) \overline{(-iy)^{\alpha}\psi_{r}(y)} dy \\ + \operatorname{Re} \sum_{r,s=m-j}^{m-1} q_{rs}^{1}(x,\xi) \int_{\mathbb{R}^{n}} \psi_{s}(y) \overline{\psi_{r}(y)} dy \\ + \varepsilon(\xi) \sum_{|\alpha|+|\beta| \leq N} \sum_{r=m-j}^{m-1} \int_{\mathbb{R}^{n}} |D_{y}^{\alpha}y^{\beta}\psi_{r}(y)| dy \\ \geq C \sum_{r=m-j}^{m-1} \int_{\mathbb{R}^{n}} |\psi_{r}(y)|^{2} dy,$$

where $q^{0(\beta)}(x,\xi) = D_x^{\alpha} D_{\xi}^{\beta} q^{0}(x,\xi)$.

Remark 2. The estimate (14) holds for any $\varphi_{m-j}, \dots, \varphi_{m-1} \in H^{m-1/2}(\Gamma)$ if and only if the matrix defined by the principal symbols $\sigma_{2m-1}(H_{pq}(\beta))(x',\xi')$ is uniformly positive definite. Thus we can prove the result in [3] without the assumption that $\sigma_{2m}(A)(x,\xi)$ is real.

To prove Theorem 3 we use the following theorem which is interesting in itself.

Theorem 4.*) Let K be any compact set in an open set Ω in \mathbb{R}^n and let P be a peudo-differential operator of order ρ defined on Ω , whose symbol is denoted by $p(x,\xi)$. Assume $\varphi \in \mathcal{D}(\Omega)$ is identically 1 in some neighbourhood of K. Then for any N>0, there is a constant C>0 such that for any $x \in K$, $\xi \in \mathbb{R}^n$ with $|\xi| \ge 1$, and ϕ , φ in $\mathcal{D}(\mathbb{R}^n)$,

^{*} During the preparation of this article the author had a chance to know that A. P. Calderón also had obtained, independently, a result similar to Theorem 4 in a little stronger form.

where $v_1(y) = \psi((y-x)|\xi|^{1/2})e^{iy\cdot\xi}$ and $v_2(y) = \phi((y-x)|\xi|^{1/2})e^{iy\cdot\xi}$.

Proofs of Theorems 3 and 4 are omitted here. They are similar to the discussion in [4].

References

- Agmon, S.: The coerciveness problem for integro-differential forms. J. Analyse Math., 6, 183-223 (1958).
- [2] Fujiwara, D.: On the asymptotic behaviour of the Green operators for elliptic boundary problems and the pure imaginary powers of some second order operators (to appear in J. Fac. Sci. Univ. Tokyo).
- [3] Fujiwara, D., and Shimakura, N.: Sur les problèmes aux limites elliptiques stablement variationnels (to appear).
- [4] Hörmander, L.: Pseudo-differential operators and non elliptic boundary problems. Ann. of Math., 83, 129-209 (1966).
- [5] Lions, J. L., and Magenes. E.: Problèmes aux limites non homogènes et applications, Vol. 1. Dunod, Paris (1968).
- [6] Shimakura, N.: Problèmes aux limites variationnels du type elliptique (to appear in Ann. Sci. Ecole Norm. Sup. de Paris).